On Grosswald’s conjecture on primitive roots
Acta Arithmetica, Tome 172 (2016) no. 3, pp. 263-270
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Grosswald’s conjecture is that $g(p)$, the least primitive root modulo $p$, satisfies $g(p) \leq \sqrt{p} - 2$ for all $p>409$. We make progress towards this conjecture by proving that $g(p) \leq \sqrt{p} -2$ for all $409 p 2.5\times 10^{15}$ and for all $p > 3.38\times 10^{71}$.
Keywords:
grosswald conjecture least primitive root modulo satisfies leq sqrt make progress towards conjecture proving leq sqrt nbsp times nbsp times
Affiliations des auteurs :
Stephen D. Cohen 1 ; Tomás Oliveira e Silva 2 ; Tim Trudgian 3
@article{10_4064_aa8109_12_2015,
author = {Stephen D. Cohen and Tom\'as Oliveira e Silva and Tim Trudgian},
title = {On {Grosswald{\textquoteright}s} conjecture on primitive roots},
journal = {Acta Arithmetica},
pages = {263--270},
publisher = {mathdoc},
volume = {172},
number = {3},
year = {2016},
doi = {10.4064/aa8109-12-2015},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa8109-12-2015/}
}
TY - JOUR AU - Stephen D. Cohen AU - Tomás Oliveira e Silva AU - Tim Trudgian TI - On Grosswald’s conjecture on primitive roots JO - Acta Arithmetica PY - 2016 SP - 263 EP - 270 VL - 172 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa8109-12-2015/ DO - 10.4064/aa8109-12-2015 LA - en ID - 10_4064_aa8109_12_2015 ER -
%0 Journal Article %A Stephen D. Cohen %A Tomás Oliveira e Silva %A Tim Trudgian %T On Grosswald’s conjecture on primitive roots %J Acta Arithmetica %D 2016 %P 263-270 %V 172 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/aa8109-12-2015/ %R 10.4064/aa8109-12-2015 %G en %F 10_4064_aa8109_12_2015
Stephen D. Cohen; Tomás Oliveira e Silva; Tim Trudgian. On Grosswald’s conjecture on primitive roots. Acta Arithmetica, Tome 172 (2016) no. 3, pp. 263-270. doi: 10.4064/aa8109-12-2015
Cité par Sources :