A generalisation of an identity of Lehmer
Acta Arithmetica, Tome 173 (2016) no. 2, pp. 121-131.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove an identity involving generalised Euler–Briggs constants, Euler’s constant, and linear forms in logarithms of algebraic numbers. This generalises and gives an alternative proof of an identity of Lehmer (1975). Further, this identity facilitates the investigation of the (conjectural) transcendental nature of generalised Euler–Briggs constants. Earlier investigations of similar type by the present authors involved the interplay between additive and multiplicative characters. This in turn rendered inevitable a careful analysis of multiplicatively independent units in suitable cyclotomic fields. The generalised Lehmer identity derived here avoids this, leading to natural and transparent proofs of earlier results. It also allows us to prove a stronger result (see Corollary 2).
DOI : 10.4064/aa8087-2-2016
Keywords: prove identity involving generalised euler briggs constants euler constant linear forms logarithms algebraic numbers generalises gives alternative proof identity lehmer further identity facilitates investigation conjectural transcendental nature generalised euler briggs constants earlier investigations similar type present authors involved interplay between additive multiplicative characters turn rendered inevitable careful analysis multiplicatively independent units suitable cyclotomic fields generalised lehmer identity derived here avoids leading natural transparent proofs earlier results allows prove stronger result see corollary nbsp

Sanoli Gun 1 ; Ekata Saha 2 ; Sneh Bala Sinha 3

1 Institute of Mathematical Sciences C.I.T. Campus, Taramani Chennai, 600 113, India
2 The Institute of Mathematical Sciences C.I.T. Campus, Taramani Chennai, 600 113, India
3 Harish-Chandra Research Institute, Jhunsi 211019 Allahabad, India
@article{10_4064_aa8087_2_2016,
     author = {Sanoli Gun and Ekata Saha and Sneh Bala Sinha},
     title = {A generalisation of an identity of {Lehmer}},
     journal = {Acta Arithmetica},
     pages = {121--131},
     publisher = {mathdoc},
     volume = {173},
     number = {2},
     year = {2016},
     doi = {10.4064/aa8087-2-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa8087-2-2016/}
}
TY  - JOUR
AU  - Sanoli Gun
AU  - Ekata Saha
AU  - Sneh Bala Sinha
TI  - A generalisation of an identity of Lehmer
JO  - Acta Arithmetica
PY  - 2016
SP  - 121
EP  - 131
VL  - 173
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa8087-2-2016/
DO  - 10.4064/aa8087-2-2016
LA  - en
ID  - 10_4064_aa8087_2_2016
ER  - 
%0 Journal Article
%A Sanoli Gun
%A Ekata Saha
%A Sneh Bala Sinha
%T A generalisation of an identity of Lehmer
%J Acta Arithmetica
%D 2016
%P 121-131
%V 173
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa8087-2-2016/
%R 10.4064/aa8087-2-2016
%G en
%F 10_4064_aa8087_2_2016
Sanoli Gun; Ekata Saha; Sneh Bala Sinha. A generalisation of an identity of Lehmer. Acta Arithmetica, Tome 173 (2016) no. 2, pp. 121-131. doi : 10.4064/aa8087-2-2016. http://geodesic.mathdoc.fr/articles/10.4064/aa8087-2-2016/

Cité par Sources :