Non-existence of points rational over number fields on Shimura curves
Acta Arithmetica, Tome 172 (2016) no. 3, pp. 243-250
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Jordan, Rotger and de Vera-Piquero proved that Shimura curves have no points rational over imaginary quadratic fields under a certain assumption. In this article, we extend their results to the case of number fields of higher degree. We also give counterexamples to the Hasse principle on Shimura curves.
Keywords:
jordan rotger vera piquero proved shimura curves have points rational imaginary quadratic fields under certain assumption article extend their results number fields higher degree counterexamples hasse principle shimura curves
Affiliations des auteurs :
Keisuke Arai 1
@article{10_4064_aa8071_10_2015,
author = {Keisuke Arai},
title = {Non-existence of points rational over number fields on {Shimura} curves},
journal = {Acta Arithmetica},
pages = {243--250},
publisher = {mathdoc},
volume = {172},
number = {3},
year = {2016},
doi = {10.4064/aa8071-10-2015},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa8071-10-2015/}
}
TY - JOUR AU - Keisuke Arai TI - Non-existence of points rational over number fields on Shimura curves JO - Acta Arithmetica PY - 2016 SP - 243 EP - 250 VL - 172 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa8071-10-2015/ DO - 10.4064/aa8071-10-2015 LA - en ID - 10_4064_aa8071_10_2015 ER -
Keisuke Arai. Non-existence of points rational over number fields on Shimura curves. Acta Arithmetica, Tome 172 (2016) no. 3, pp. 243-250. doi: 10.4064/aa8071-10-2015
Cité par Sources :