Points de hauteur bornée sur les hypersurfaces lisses des variétés toriques
Acta Arithmetica, Tome 172 (2016) no. 1, pp. 1-97
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We demonstrate the Batyrev–Manin Conjecture for the number of points of bounded height on hypersurfaces of some toric varieties whose rank of the Picard group is 2. The method used is inspired by the one developed by Schindler for the case of hypersurfaces of biprojective spaces and by Blomer and Brüdern for some hypersurfaces of multiprojective spaces. These methods are based on the Hardy–Littlewood circle method. The constant obtained in the final asymptotic formula is the one conjectured by Peyre.
Mots-clés :
demonstrate batyrev manin conjecture number points bounded height hypersurfaces toric varieties whose rank picard group method inspired developed schindler hypersurfaces biprojective spaces blomer dern hypersurfaces multiprojective spaces these methods based hardy littlewood circle method constant obtained final asymptotic formula conjectured peyre
Affiliations des auteurs :
Teddy Mignot 1
@article{10_4064_aa8050_12_2015,
author = {Teddy Mignot},
title = {Points de hauteur born\'ee sur les hypersurfaces lisses des vari\'et\'es toriques},
journal = {Acta Arithmetica},
pages = {1--97},
publisher = {mathdoc},
volume = {172},
number = {1},
year = {2016},
doi = {10.4064/aa8050-12-2015},
language = {fr},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa8050-12-2015/}
}
TY - JOUR AU - Teddy Mignot TI - Points de hauteur bornée sur les hypersurfaces lisses des variétés toriques JO - Acta Arithmetica PY - 2016 SP - 1 EP - 97 VL - 172 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa8050-12-2015/ DO - 10.4064/aa8050-12-2015 LA - fr ID - 10_4064_aa8050_12_2015 ER -
Teddy Mignot. Points de hauteur bornée sur les hypersurfaces lisses des variétés toriques. Acta Arithmetica, Tome 172 (2016) no. 1, pp. 1-97. doi: 10.4064/aa8050-12-2015
Cité par Sources :