The circular units and the Stickelberger ideal of a cyclotomic field revisited
Acta Arithmetica, Tome 174 (2016) no. 3, pp. 217-238.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The aim of this paper is a new construction of bases of the group of circular units and of the Stickelberger ideal for a family of abelian fields containing all cyclotomic fields, namely for any compositum of imaginary abelian fields, each ramified only at one prime. In contrast to the previous papers on this topic our approach consists in an explicit construction of Ennola relations. This gives an explicit description of the torsion parts of odd and even universal ordinary distributions, but it also allows us to give a shorter proof that the given set of elements is a basis. Moreover we obtain a presentation of the group of circular numbers for any field in the above mentioned family.
DOI : 10.4064/aa8009-4-2016
Keywords: paper construction bases group circular units stickelberger ideal family abelian fields containing cyclotomic fields namely compositum imaginary abelian fields each ramified only prime contrast previous papers topic approach consists explicit construction ennola relations gives explicit description torsion parts odd even universal ordinary distributions allows shorter proof given set elements basis moreover obtain presentation group circular numbers field above mentioned family

Radan Kučera 1

1 Department of Mathematics and Statistics Faculty of Science Masaryk University Kotlářská 2 611 37 Brno, Czech Republic
@article{10_4064_aa8009_4_2016,
     author = {Radan Ku\v{c}era},
     title = {The circular units and the {Stickelberger} ideal of a cyclotomic field revisited},
     journal = {Acta Arithmetica},
     pages = {217--238},
     publisher = {mathdoc},
     volume = {174},
     number = {3},
     year = {2016},
     doi = {10.4064/aa8009-4-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa8009-4-2016/}
}
TY  - JOUR
AU  - Radan Kučera
TI  - The circular units and the Stickelberger ideal of a cyclotomic field revisited
JO  - Acta Arithmetica
PY  - 2016
SP  - 217
EP  - 238
VL  - 174
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa8009-4-2016/
DO  - 10.4064/aa8009-4-2016
LA  - en
ID  - 10_4064_aa8009_4_2016
ER  - 
%0 Journal Article
%A Radan Kučera
%T The circular units and the Stickelberger ideal of a cyclotomic field revisited
%J Acta Arithmetica
%D 2016
%P 217-238
%V 174
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa8009-4-2016/
%R 10.4064/aa8009-4-2016
%G en
%F 10_4064_aa8009_4_2016
Radan Kučera. The circular units and the Stickelberger ideal of a cyclotomic field revisited. Acta Arithmetica, Tome 174 (2016) no. 3, pp. 217-238. doi : 10.4064/aa8009-4-2016. http://geodesic.mathdoc.fr/articles/10.4064/aa8009-4-2016/

Cité par Sources :