The class number one problem for the real quadratic fields $\mathbb {Q}(\sqrt {(an)^2+4a})$
Acta Arithmetica, Tome 172 (2016) no. 2, pp. 117-131.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We solve unconditionally the class number one problem for the $2$-parameter family of real quadratic fields ${\mathbb Q}(\sqrt{d})$ with square-free discriminant $d=(an)^2+4a$ for positive odd integers $a$ and $n$.
DOI : 10.4064/aa7957-12-2015
Keywords: solve unconditionally class number problem parameter family real quadratic fields mathbb sqrt square free discriminant positive odd integers

András Biró 1 ; Kostadinka Lapkova 1

1 A. Rényi Institute of Mathematics Hungarian Academy of Sciences Reáltanoda u. 13-15 1053 Budapest, Hungary
@article{10_4064_aa7957_12_2015,
     author = {Andr\'as Bir\'o and Kostadinka Lapkova},
     title = {The class number one problem for the real quadratic fields $\mathbb {Q}(\sqrt {(an)^2+4a})$},
     journal = {Acta Arithmetica},
     pages = {117--131},
     publisher = {mathdoc},
     volume = {172},
     number = {2},
     year = {2016},
     doi = {10.4064/aa7957-12-2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa7957-12-2015/}
}
TY  - JOUR
AU  - András Biró
AU  - Kostadinka Lapkova
TI  - The class number one problem for the real quadratic fields $\mathbb {Q}(\sqrt {(an)^2+4a})$
JO  - Acta Arithmetica
PY  - 2016
SP  - 117
EP  - 131
VL  - 172
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa7957-12-2015/
DO  - 10.4064/aa7957-12-2015
LA  - en
ID  - 10_4064_aa7957_12_2015
ER  - 
%0 Journal Article
%A András Biró
%A Kostadinka Lapkova
%T The class number one problem for the real quadratic fields $\mathbb {Q}(\sqrt {(an)^2+4a})$
%J Acta Arithmetica
%D 2016
%P 117-131
%V 172
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa7957-12-2015/
%R 10.4064/aa7957-12-2015
%G en
%F 10_4064_aa7957_12_2015
András Biró; Kostadinka Lapkova. The class number one problem for the real quadratic fields $\mathbb {Q}(\sqrt {(an)^2+4a})$. Acta Arithmetica, Tome 172 (2016) no. 2, pp. 117-131. doi : 10.4064/aa7957-12-2015. http://geodesic.mathdoc.fr/articles/10.4064/aa7957-12-2015/

Cité par Sources :