The set of minimal distances in Krull monoids
Acta Arithmetica, Tome 173 (2016) no. 2, pp. 97-120.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $H$ be a Krull monoid with class group $G$. Then every nonunit $a \in H$ can be written as a finite product of atoms, say $a= $ $u_1 \cdot \ldots \cdot u_k$. The set $\mathsf L (a)$ of all possible factorization lengths $k$ is called the set of lengths of $a$. If $G$ is finite, then there is a constant $M \in \mathbb N$ such that all sets of lengths are almost arithmetical multiprogressions with bound $M$ and with difference $d \in \Delta^* (H)$, where $\Delta^* (H)$ denotes the set of minimal distances of $H$. We show that $\max \Delta^* (H) \le \max \{\exp (G)-2, \mathsf r (G)-1\}$ and that equality holds if every class of $G$ contains a prime divisor, which holds true for holomorphy rings in global fields.
DOI : 10.4064/aa7906-1-2016
Keywords: krull monoid class group every nonunit written finite product atoms say cdot ldots cdot set mathsf possible factorization lengths called set lengths finite there constant mathbb sets lengths almost arithmetical multiprogressions bound difference delta * where delta * denotes set minimal distances max delta * max exp mathsf equality holds every class contains prime divisor which holds holomorphy rings global fields

Alfred Geroldinger 1 ; Qinghai Zhong 1

1 Institute for Mathematics and Scientific Computing University of Graz NAWI Graz Heinrichstraße 36 8010 Graz, Austria
@article{10_4064_aa7906_1_2016,
     author = {Alfred Geroldinger and Qinghai Zhong},
     title = {The set of minimal distances in {Krull} monoids},
     journal = {Acta Arithmetica},
     pages = {97--120},
     publisher = {mathdoc},
     volume = {173},
     number = {2},
     year = {2016},
     doi = {10.4064/aa7906-1-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa7906-1-2016/}
}
TY  - JOUR
AU  - Alfred Geroldinger
AU  - Qinghai Zhong
TI  - The set of minimal distances in Krull monoids
JO  - Acta Arithmetica
PY  - 2016
SP  - 97
EP  - 120
VL  - 173
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa7906-1-2016/
DO  - 10.4064/aa7906-1-2016
LA  - en
ID  - 10_4064_aa7906_1_2016
ER  - 
%0 Journal Article
%A Alfred Geroldinger
%A Qinghai Zhong
%T The set of minimal distances in Krull monoids
%J Acta Arithmetica
%D 2016
%P 97-120
%V 173
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa7906-1-2016/
%R 10.4064/aa7906-1-2016
%G en
%F 10_4064_aa7906_1_2016
Alfred Geroldinger; Qinghai Zhong. The set of minimal distances in Krull monoids. Acta Arithmetica, Tome 173 (2016) no. 2, pp. 97-120. doi : 10.4064/aa7906-1-2016. http://geodesic.mathdoc.fr/articles/10.4064/aa7906-1-2016/

Cité par Sources :