The set of minimal distances in Krull monoids
Acta Arithmetica, Tome 173 (2016) no. 2, pp. 97-120
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $H$ be a Krull monoid with class group $G$. Then every nonunit $a \in H$ can be written as a finite product of atoms, say $a= $ $u_1 \cdot \ldots \cdot u_k$. The set $\mathsf L (a)$ of all possible factorization lengths $k$ is called the set of lengths of $a$. If $G$ is finite, then there is a constant $M \in \mathbb N$ such that all sets of lengths are almost arithmetical multiprogressions with bound $M$ and with difference $d \in \Delta^* (H)$, where $\Delta^* (H)$ denotes the set of minimal distances of $H$. We show that $\max \Delta^* (H) \le \max \{\exp (G)-2, \mathsf r (G)-1\}$ and that equality holds if every class of $G$ contains a prime divisor, which holds true for holomorphy rings in global fields.
Keywords:
krull monoid class group every nonunit written finite product atoms say cdot ldots cdot set mathsf possible factorization lengths called set lengths finite there constant mathbb sets lengths almost arithmetical multiprogressions bound difference delta * where delta * denotes set minimal distances max delta * max exp mathsf equality holds every class contains prime divisor which holds holomorphy rings global fields
Affiliations des auteurs :
Alfred Geroldinger 1 ; Qinghai Zhong 1
@article{10_4064_aa7906_1_2016,
author = {Alfred Geroldinger and Qinghai Zhong},
title = {The set of minimal distances in {Krull} monoids},
journal = {Acta Arithmetica},
pages = {97--120},
publisher = {mathdoc},
volume = {173},
number = {2},
year = {2016},
doi = {10.4064/aa7906-1-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa7906-1-2016/}
}
TY - JOUR AU - Alfred Geroldinger AU - Qinghai Zhong TI - The set of minimal distances in Krull monoids JO - Acta Arithmetica PY - 2016 SP - 97 EP - 120 VL - 173 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa7906-1-2016/ DO - 10.4064/aa7906-1-2016 LA - en ID - 10_4064_aa7906_1_2016 ER -
Alfred Geroldinger; Qinghai Zhong. The set of minimal distances in Krull monoids. Acta Arithmetica, Tome 173 (2016) no. 2, pp. 97-120. doi: 10.4064/aa7906-1-2016
Cité par Sources :