Restricted sumsets in finite nilpotent groups
Acta Arithmetica, Tome 178 (2017) no. 2, pp. 101-123
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Suppose that $A,B$ are non-empty subsets of the finite nilpotent group $G$. If $A\not=B$, then the cardinality of the restricted sumset
$$A\mathbin\dotplus B=\{a+b:a\in A,\, b\in B,\, a\neq b\}
$$
is at least
$$\min\{p(G),|A|+|B|-2\},$$
where $p(G)$ denotes the least prime factor of $|G|$. Moreover we prove that if $A$ is a non-empty subset of a finite group $G$ with $|A| \lt (p(G)+3)/2$, then the elements of $A$ commute when
$$
|A\mathbin\dotplus A|=2|A|-3.
$$
Keywords:
suppose non empty subsets finite nilpotent group nbsp cardinality restricted sumset mathbin dotplus neq least min where denotes least prime factor moreover prove non empty subset finite group elements commute mathbin dotplus
Affiliations des auteurs :
Shanshan Du 1 ; Hao Pan 2
@article{10_4064_aa7437_8_2016,
author = {Shanshan Du and Hao Pan},
title = {Restricted sumsets in finite nilpotent groups},
journal = {Acta Arithmetica},
pages = {101--123},
publisher = {mathdoc},
volume = {178},
number = {2},
year = {2017},
doi = {10.4064/aa7437-8-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa7437-8-2016/}
}
TY - JOUR AU - Shanshan Du AU - Hao Pan TI - Restricted sumsets in finite nilpotent groups JO - Acta Arithmetica PY - 2017 SP - 101 EP - 123 VL - 178 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa7437-8-2016/ DO - 10.4064/aa7437-8-2016 LA - en ID - 10_4064_aa7437_8_2016 ER -
Shanshan Du; Hao Pan. Restricted sumsets in finite nilpotent groups. Acta Arithmetica, Tome 178 (2017) no. 2, pp. 101-123. doi: 10.4064/aa7437-8-2016
Cité par Sources :