$t$-adic symmetric multiple zeta values for indices in which 1 and 3 appear alternately
Acta Arithmetica, Tome 216 (2024) no. 3, pp. 249-275.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

This paper deals with the $t$-adic symmetric multiple zeta values modulo $t^m$ without modulo $\pi^2$ reduction for indices in which $1$ and $3$ appear alternately. We investigate those values that can be expressed as a polynomial of the Riemann zeta values, and give a conjecturally complete list of explicit formulas for such values.
DOI : 10.4064/aa231109-9-7
Keywords: paper deals t adic symmetric multiple zeta values modulo without modulo reduction indices which appear alternately investigate those values expressed polynomial riemann zeta values conjecturally complete list explicit formulas values

Minoru Hirose 1 ; Hideki Murahara 2 ; Shingo Saito 3

1 Graduate School of Science and Engineering Kagoshima University Kagoshima, 890-0065, Japan
2 The University of Kitakyushu Kitakyushu, Fukuoka, 802-8577, Japan
3 Faculty of Arts and Science Kyushu University Fukuoka, 819-0395, Japan
@article{10_4064_aa231109_9_7,
     author = {Minoru Hirose and Hideki Murahara and Shingo Saito},
     title = {$t$-adic symmetric multiple zeta values for indices in which 1 and 3 appear alternately},
     journal = {Acta Arithmetica},
     pages = {249--275},
     publisher = {mathdoc},
     volume = {216},
     number = {3},
     year = {2024},
     doi = {10.4064/aa231109-9-7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa231109-9-7/}
}
TY  - JOUR
AU  - Minoru Hirose
AU  - Hideki Murahara
AU  - Shingo Saito
TI  - $t$-adic symmetric multiple zeta values for indices in which 1 and 3 appear alternately
JO  - Acta Arithmetica
PY  - 2024
SP  - 249
EP  - 275
VL  - 216
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa231109-9-7/
DO  - 10.4064/aa231109-9-7
LA  - en
ID  - 10_4064_aa231109_9_7
ER  - 
%0 Journal Article
%A Minoru Hirose
%A Hideki Murahara
%A Shingo Saito
%T $t$-adic symmetric multiple zeta values for indices in which 1 and 3 appear alternately
%J Acta Arithmetica
%D 2024
%P 249-275
%V 216
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa231109-9-7/
%R 10.4064/aa231109-9-7
%G en
%F 10_4064_aa231109_9_7
Minoru Hirose; Hideki Murahara; Shingo Saito. $t$-adic symmetric multiple zeta values for indices in which 1 and 3 appear alternately. Acta Arithmetica, Tome 216 (2024) no. 3, pp. 249-275. doi : 10.4064/aa231109-9-7. http://geodesic.mathdoc.fr/articles/10.4064/aa231109-9-7/

Cité par Sources :