On the 16-rank of class groups of $\mathbb{Q}(\sqrt{-3p})$ for primes $p$ congruent to 1 modulo 4
Acta Arithmetica, Tome 202 (2022) no. 1, pp. 1-20
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
For fixed $q\in \{3,7,11,19, 43,67,163\}$, we consider the density of primes $p$ congruent to $1$ modulo $4$ such that the class group of the number field $\mathbb {Q}(\sqrt {-qp})$ has order divisible by $16$. We show that this density is equal to $1/8$, in line with a more general conjecture of Gerth. Vinogradov’s method is the key analytic tool for our work.
Keywords:
fixed consider density primes congruent modulo class group number field mathbb sqrt qp has order divisible density equal line general conjecture gerth vinogradov method key analytic tool work
Affiliations des auteurs :
Margherita Piccolo 1
@article{10_4064_aa200422_9_6,
author = {Margherita Piccolo},
title = {On the 16-rank of class groups of $\mathbb{Q}(\sqrt{-3p})$ for primes $p$ congruent to 1 modulo 4},
journal = {Acta Arithmetica},
pages = {1--20},
publisher = {mathdoc},
volume = {202},
number = {1},
year = {2022},
doi = {10.4064/aa200422-9-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa200422-9-6/}
}
TY - JOUR
AU - Margherita Piccolo
TI - On the 16-rank of class groups of $\mathbb{Q}(\sqrt{-3p})$ for primes $p$ congruent to 1 modulo 4
JO - Acta Arithmetica
PY - 2022
SP - 1
EP - 20
VL - 202
IS - 1
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.4064/aa200422-9-6/
DO - 10.4064/aa200422-9-6
LA - en
ID - 10_4064_aa200422_9_6
ER -
%0 Journal Article
%A Margherita Piccolo
%T On the 16-rank of class groups of $\mathbb{Q}(\sqrt{-3p})$ for primes $p$ congruent to 1 modulo 4
%J Acta Arithmetica
%D 2022
%P 1-20
%V 202
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa200422-9-6/
%R 10.4064/aa200422-9-6
%G en
%F 10_4064_aa200422_9_6
Margherita Piccolo. On the 16-rank of class groups of $\mathbb{Q}(\sqrt{-3p})$ for primes $p$ congruent to 1 modulo 4. Acta Arithmetica, Tome 202 (2022) no. 1, pp. 1-20. doi: 10.4064/aa200422-9-6
Cité par Sources :