Factorization of bivariate sparse polynomials
Acta Arithmetica, Tome 191 (2019) no. 4, pp. 361-381
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove a function field analogue of a conjecture of Schinzel on the factorization of univariate polynomials over the rationals. We derive from it a finiteness theorem for the irreducible factorizations of the bivariate Laurent polynomials in families with a fixed set of complex coefficients and varying exponents. Roughly speaking, this result shows that the truly bivariate irreducible factors of these sparse Laurent polynomials are also sparse. The proofs are based on a variant of the toric Bertini theorem due to Zannier and to Fuchs, Mantova and Zannier.
Keywords:
prove function field analogue conjecture schinzel factorization univariate polynomials rationals derive finiteness theorem irreducible factorizations bivariate laurent polynomials families fixed set complex coefficients varying exponents roughly speaking result shows truly bivariate irreducible factors these sparse laurent polynomials sparse proofs based variant toric bertini theorem due zannier fuchs mantova zannier
Affiliations des auteurs :
Francesco Amoroso 1 ; Martín Sombra 2
@article{10_4064_aa171219_18_12,
author = {Francesco Amoroso and Mart{\'\i}n Sombra},
title = {Factorization of bivariate sparse polynomials},
journal = {Acta Arithmetica},
pages = {361--381},
publisher = {mathdoc},
volume = {191},
number = {4},
year = {2019},
doi = {10.4064/aa171219-18-12},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa171219-18-12/}
}
TY - JOUR AU - Francesco Amoroso AU - Martín Sombra TI - Factorization of bivariate sparse polynomials JO - Acta Arithmetica PY - 2019 SP - 361 EP - 381 VL - 191 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa171219-18-12/ DO - 10.4064/aa171219-18-12 LA - en ID - 10_4064_aa171219_18_12 ER -
Francesco Amoroso; Martín Sombra. Factorization of bivariate sparse polynomials. Acta Arithmetica, Tome 191 (2019) no. 4, pp. 361-381. doi: 10.4064/aa171219-18-12
Cité par Sources :