Quantitative results on Diophantine equations in many variables
Acta Arithmetica, Tome 194 (2020) no. 3, pp. 219-240
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We consider a system of integer polynomials of the same degree with non-singular local zeros and in many variables. Generalising the work of Birch (1962) we find a quantitative asymptotic formula (in terms of the maximum of the absolute value of the coefficients of these polynomials) for the number of integer zeros of this system within a growing box. Using a quantitative version of the Nullstellensatz, we obtain a quantitative strong approximation result, i.e. an upper bound on the smallest non-trivial integer zero provided the system of polynomials is non-singular.
Keywords:
consider system integer polynomials degree non singular local zeros many variables generalising work birch quantitative asymptotic formula terms maximum absolute value coefficients these polynomials number integer zeros system within growing box using quantitative version nullstellensatz obtain quantitative strong approximation result upper bound smallest non trivial integer zero provided system polynomials non singular
Affiliations des auteurs :
Jan-Willem M. van Ittersum  1
@article{10_4064_aa171212_24_9,
author = {Jan-Willem M. van Ittersum},
title = {Quantitative results on {Diophantine} equations in many variables},
journal = {Acta Arithmetica},
pages = {219--240},
year = {2020},
volume = {194},
number = {3},
doi = {10.4064/aa171212-24-9},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa171212-24-9/}
}
TY - JOUR AU - Jan-Willem M. van Ittersum TI - Quantitative results on Diophantine equations in many variables JO - Acta Arithmetica PY - 2020 SP - 219 EP - 240 VL - 194 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4064/aa171212-24-9/ DO - 10.4064/aa171212-24-9 LA - en ID - 10_4064_aa171212_24_9 ER -
Jan-Willem M. van Ittersum. Quantitative results on Diophantine equations in many variables. Acta Arithmetica, Tome 194 (2020) no. 3, pp. 219-240. doi: 10.4064/aa171212-24-9
Cité par Sources :