On certain vector valued Siegel modular forms of type $(k,2)$ over $\mathbb Z_{(p)}$
Acta Arithmetica, Tome 188 (2019) no. 1, pp. 83-98
We give generators of the module over $M_*^{{\rm ev}}$
of vector valued Siegel modular forms of type $(k,2)$ over $\mathbb Z_{(p)}$.
This gives an example of the positive solution to the more general problem whether the module of vector valued modular forms of arbitrary degree is finitely generated over the ring of modular forms for $\mathbb Z_{(p)}$.
Keywords:
generators module * vector valued siegel modular forms type mathbb gives example positive solution general problem whether module vector valued modular forms arbitrary degree finitely generated ring modular forms mathbb
Affiliations des auteurs :
Hirotaka Kodama  1
@article{10_4064_aa171119_21_5,
author = {Hirotaka Kodama},
title = {On certain vector valued {Siegel} modular forms of type $(k,2)$ over $\mathbb Z_{(p)}$},
journal = {Acta Arithmetica},
pages = {83--98},
year = {2019},
volume = {188},
number = {1},
doi = {10.4064/aa171119-21-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa171119-21-5/}
}
TY - JOUR
AU - Hirotaka Kodama
TI - On certain vector valued Siegel modular forms of type $(k,2)$ over $\mathbb Z_{(p)}$
JO - Acta Arithmetica
PY - 2019
SP - 83
EP - 98
VL - 188
IS - 1
UR - http://geodesic.mathdoc.fr/articles/10.4064/aa171119-21-5/
DO - 10.4064/aa171119-21-5
LA - en
ID - 10_4064_aa171119_21_5
ER -
Hirotaka Kodama. On certain vector valued Siegel modular forms of type $(k,2)$ over $\mathbb Z_{(p)}$. Acta Arithmetica, Tome 188 (2019) no. 1, pp. 83-98. doi: 10.4064/aa171119-21-5
Cité par Sources :