Distances from points to planes
Acta Arithmetica, Tome 186 (2018) no. 3, pp. 219-224
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove that if $E \subset {\Bbb F}_q^d$, $d \ge 2$, and $F \subset \operatorname{Graff}(d-1,d)$, the set of affine $d-1$-dimensional planes in ${\Bbb F}_q^d$, then $|\Delta(E,F)| \ge {q}/{2}$ if $|E|\,|F| \gt q^{d+1}$, where $\Delta(E,F)$ is the set of distances from points in $E$ to planes in $F$. In dimension three and higher this significantly improves the exponent obtained by Pham, Phuong, Sang, Valculescu and Vinh (2018), who obtain the same conclusion under the assumption $|E|\,|F| \ge Cq^{{4d}/{3}}$.
Keywords:
prove subset bbb subset operatorname graff d set affine d dimensional planes bbb delta where delta set distances points planes dimension three higher significantly improves exponent obtained pham phuong sang valculescu vinh who obtain conclusion under assumption
Affiliations des auteurs :
P. Birklbauer 1 ; A. Iosevich 1 ; T. Pham 2
@article{10_4064_aa171110_23_8,
author = {P. Birklbauer and A. Iosevich and T. Pham},
title = {Distances from points to planes},
journal = {Acta Arithmetica},
pages = {219--224},
publisher = {mathdoc},
volume = {186},
number = {3},
year = {2018},
doi = {10.4064/aa171110-23-8},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa171110-23-8/}
}
TY - JOUR AU - P. Birklbauer AU - A. Iosevich AU - T. Pham TI - Distances from points to planes JO - Acta Arithmetica PY - 2018 SP - 219 EP - 224 VL - 186 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa171110-23-8/ DO - 10.4064/aa171110-23-8 LA - en ID - 10_4064_aa171110_23_8 ER -
P. Birklbauer; A. Iosevich; T. Pham. Distances from points to planes. Acta Arithmetica, Tome 186 (2018) no. 3, pp. 219-224. doi: 10.4064/aa171110-23-8
Cité par Sources :