On a problem of Nathanson
Acta Arithmetica, Tome 185 (2018) no. 3, pp. 275-280
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
A set $A$ of nonnegative integers is an asymptotic basis of order $h$ if every sufficiently large integer can be represented as the sum of $h$ integers (not necessarily distinct) of $A$. An asymptotic basis $A$ of order $h$ is minimal if no proper subset of $A$ is an asymptotic basis of order $h$. We resolve a problem of Nathanson on minimal asymptotic bases of order $h$.
Keywords:
set nonnegative integers asymptotic basis order every sufficiently large integer represented sum integers necessarily distinct asymptotic basis order minimal proper subset asymptotic basis order resolve problem nathanson minimal asymptotic bases order nbsp
Affiliations des auteurs :
Yong-Gao Chen 1 ; Min Tang 2
@article{10_4064_aa171031_26_4,
author = {Yong-Gao Chen and Min Tang},
title = {On a problem of {Nathanson}},
journal = {Acta Arithmetica},
pages = {275--280},
year = {2018},
volume = {185},
number = {3},
doi = {10.4064/aa171031-26-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa171031-26-4/}
}
Yong-Gao Chen; Min Tang. On a problem of Nathanson. Acta Arithmetica, Tome 185 (2018) no. 3, pp. 275-280. doi: 10.4064/aa171031-26-4
Cité par Sources :