Adelic point groups of elliptic curves
Acta Arithmetica, Tome 199 (2021) no. 3, pp. 221-236.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We show that for an elliptic curve $E$ defined over a number field $K$, the group $E(\mathbf{A} _K)$ of points of $E$ over the adele ring $\mathbf{A} _K$ of $K$ is a topological group that can be analyzed in terms of the Galois representation associated to the torsion points of $E$. An explicit description of $E(\mathbf{A} _K)$ is given, and we prove that for $K$ of degree $n$, ‘almost all’ elliptic curves over $K$ have an adelic point group topologically isomorphic to $$ (\mathbf{R} /\mathbf{Z} )^n\times \widehat {\mathbf{Z}} ^n\times \prod _{m=1}^\infty \mathbf{Z} /m\mathbf{Z} . $$ We also show that there exist infinitely many elliptic curves over $K$ having a different adelic point group.
DOI : 10.4064/aa171025-27-3
Keywords: elliptic curve defined number field nbsp group mathbf points adele ring mathbf topological group analyzed terms galois representation associated torsion points explicit description mathbf given prove degree almost elliptic curves have adelic point group topologically isomorphic mathbf mathbf times widehat mathbf times prod infty mathbf mathbf there exist infinitely many elliptic curves having different adelic point group

Athanasios Angelakis 1 ; Peter Stevenhagen 2

1 Department of Mathematics National Technical University of Athens 9 Iroon Polytexneiou St. 15780 Zografou, Attiki, Greece
2 Mathematisch Instituut Leiden Universiteit Postbus 9512 2300 RA Leiden, The Netherlands
@article{10_4064_aa171025_27_3,
     author = {Athanasios Angelakis and Peter Stevenhagen},
     title = {Adelic point groups of elliptic curves},
     journal = {Acta Arithmetica},
     pages = {221--236},
     publisher = {mathdoc},
     volume = {199},
     number = {3},
     year = {2021},
     doi = {10.4064/aa171025-27-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa171025-27-3/}
}
TY  - JOUR
AU  - Athanasios Angelakis
AU  - Peter Stevenhagen
TI  - Adelic point groups of elliptic curves
JO  - Acta Arithmetica
PY  - 2021
SP  - 221
EP  - 236
VL  - 199
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa171025-27-3/
DO  - 10.4064/aa171025-27-3
LA  - en
ID  - 10_4064_aa171025_27_3
ER  - 
%0 Journal Article
%A Athanasios Angelakis
%A Peter Stevenhagen
%T Adelic point groups of elliptic curves
%J Acta Arithmetica
%D 2021
%P 221-236
%V 199
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa171025-27-3/
%R 10.4064/aa171025-27-3
%G en
%F 10_4064_aa171025_27_3
Athanasios Angelakis; Peter Stevenhagen. Adelic point groups of elliptic curves. Acta Arithmetica, Tome 199 (2021) no. 3, pp. 221-236. doi : 10.4064/aa171025-27-3. http://geodesic.mathdoc.fr/articles/10.4064/aa171025-27-3/

Cité par Sources :