Structural properties and formulae of the spectra of integral circulant graphs
Acta Arithmetica, Tome 184 (2018) no. 3, pp. 297-315.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Every integral circulant graph on $n$ vertices is isomorphic to some graph $\newcommand{\Icg}[2]{\mathrm{ICG}({#2},{#1})}\Icg{\mathcal D}{n}$ having vertex set $\mathbb{Z}/n\mathbb{Z}$ and edge set \[ \{(a,b):\, a,b\in\mathbb{Z}/n\mathbb{Z} ,\, \gcd(a-b,n)\in {\cal D}\} \] for a uniquely determined set $\mathcal D$ of positive divisors of $n$. According to a conjecture of So, two integral circulant graphs are isomorphic if and only if their spectra, i.e. the eigenvalues of their adjacency matrices, coincide. In order to facilitate a deeper understanding of the interrelation between integral circulant graphs and their spectra, we deduce several structural spectral properties of $\newcommand{\Icg}[2]{\mathrm{ICG}({#2},{#1})}\Icg{\mathcal D}{p^k}$ with prime power order $p^k$ and establish an explicit parameterisation of the spectrum of $\newcommand{\Icg}[2]{\mathrm{ICG}({#2},{#1})}\Icg{\mathcal D}{n}$ for multiplicative divisor sets $\mathcal D$. Our crucial tool will be the new concept of the leaping set of $\mathcal D$.
DOI : 10.4064/aa171020-30-6
Keywords: every integral circulant graph vertices isomorphic graph newcommand icg mathrm icg icg mathcal having vertex set mathbb mathbb edge set mathbb mathbb gcd a b cal uniquely determined set mathcal positive divisors according conjecture integral circulant graphs isomorphic only their spectra eigenvalues their adjacency matrices coincide order facilitate deeper understanding interrelation between integral circulant graphs their spectra deduce several structural spectral properties newcommand icg mathrm icg icg mathcal prime power order establish explicit parameterisation spectrum newcommand icg mathrm icg icg mathcal multiplicative divisor sets nbsp mathcal crucial tool concept leaping set nbsp mathcal

J. W. Sander 1

1 Institut für Mathematik und Angewandte Informatik Universität Hildesheim D-31141 Hildesheim, Germany
@article{10_4064_aa171020_30_6,
     author = {J. W. Sander},
     title = {Structural properties and formulae of the spectra of integral circulant graphs},
     journal = {Acta Arithmetica},
     pages = {297--315},
     publisher = {mathdoc},
     volume = {184},
     number = {3},
     year = {2018},
     doi = {10.4064/aa171020-30-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa171020-30-6/}
}
TY  - JOUR
AU  - J. W. Sander
TI  - Structural properties and formulae of the spectra of integral circulant graphs
JO  - Acta Arithmetica
PY  - 2018
SP  - 297
EP  - 315
VL  - 184
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa171020-30-6/
DO  - 10.4064/aa171020-30-6
LA  - en
ID  - 10_4064_aa171020_30_6
ER  - 
%0 Journal Article
%A J. W. Sander
%T Structural properties and formulae of the spectra of integral circulant graphs
%J Acta Arithmetica
%D 2018
%P 297-315
%V 184
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa171020-30-6/
%R 10.4064/aa171020-30-6
%G en
%F 10_4064_aa171020_30_6
J. W. Sander. Structural properties and formulae of the spectra of integral circulant graphs. Acta Arithmetica, Tome 184 (2018) no. 3, pp. 297-315. doi : 10.4064/aa171020-30-6. http://geodesic.mathdoc.fr/articles/10.4064/aa171020-30-6/

Cité par Sources :