Representation of integers by cyclotomic binary forms
Acta Arithmetica, Tome 184 (2018) no. 1, pp. 67-86
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
The homogeneous form $\varPhi_n(X,Y)$ of degree $\varphi(n)$ which is associated with the cyclotomic polynomial $\phi_n(X)$ is dubbed a cyclotomic binary form. A positive integer $m\ge 1$ is said to be representable by a cyclotomic binary form if there exist integers $n,x,y$ with $n\ge 3$ and $\max\{|x|, |y|\}\ge 2$ such that $\varPhi_n(x,y)=m$. We prove that the number $a_m$ of such representations of $m$ by a cyclotomic binary form is finite. More precisely, we have $\varphi(n) \le ( {2}/ {\log 3} )\log m$ and $\max\{|x|,|y|\} \le ({2}/{\sqrt{3}} )\, m^{1/\varphi(n)}.$ We give a description of the asymptotic cardinality of the set of values taken by the forms for $n\geq 3$. This will imply that the set of integers $m$ such that $a_m\neq 0$ has natural density 0. We will deduce that the average value of the nonzero values of $a_m$ grows like $\sqrt{\log \, m}$.
Keywords:
homogeneous form varphi degree varphi which associated cyclotomic polynomial phi dubbed cyclotomic binary form positive integer said representable cyclotomic binary form there exist integers max varphi prove number representations cyclotomic binary form finite precisely have varphi log log max sqrt varphi description asymptotic cardinality set values taken forms geq imply set integers neq has natural density deduce average value nonzero values nbsp grows sqrt log
Affiliations des auteurs :
Étienne Fouvry 1 ; Claude Levesque 2 ; Michel Waldschmidt 3
@article{10_4064_aa171012_24_12,
author = {\'Etienne Fouvry and Claude Levesque and Michel Waldschmidt},
title = {Representation of integers by cyclotomic binary forms},
journal = {Acta Arithmetica},
pages = {67--86},
publisher = {mathdoc},
volume = {184},
number = {1},
year = {2018},
doi = {10.4064/aa171012-24-12},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa171012-24-12/}
}
TY - JOUR AU - Étienne Fouvry AU - Claude Levesque AU - Michel Waldschmidt TI - Representation of integers by cyclotomic binary forms JO - Acta Arithmetica PY - 2018 SP - 67 EP - 86 VL - 184 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa171012-24-12/ DO - 10.4064/aa171012-24-12 LA - en ID - 10_4064_aa171012_24_12 ER -
%0 Journal Article %A Étienne Fouvry %A Claude Levesque %A Michel Waldschmidt %T Representation of integers by cyclotomic binary forms %J Acta Arithmetica %D 2018 %P 67-86 %V 184 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/aa171012-24-12/ %R 10.4064/aa171012-24-12 %G en %F 10_4064_aa171012_24_12
Étienne Fouvry; Claude Levesque; Michel Waldschmidt. Representation of integers by cyclotomic binary forms. Acta Arithmetica, Tome 184 (2018) no. 1, pp. 67-86. doi: 10.4064/aa171012-24-12
Cité par Sources :