Representation of integers by cyclotomic binary forms
Acta Arithmetica, Tome 184 (2018) no. 1, pp. 67-86.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The homogeneous form $\varPhi_n(X,Y)$ of degree $\varphi(n)$ which is associated with the cyclotomic polynomial $\phi_n(X)$ is dubbed a cyclotomic binary form. A positive integer $m\ge 1$ is said to be representable by a cyclotomic binary form if there exist integers $n,x,y$ with $n\ge 3$ and $\max\{|x|, |y|\}\ge 2$ such that $\varPhi_n(x,y)=m$. We prove that the number $a_m$ of such representations of $m$ by a cyclotomic binary form is finite. More precisely, we have $\varphi(n) \le ( {2}/ {\log 3} )\log m$ and $\max\{|x|,|y|\} \le ({2}/{\sqrt{3}} )\, m^{1/\varphi(n)}.$ We give a description of the asymptotic cardinality of the set of values taken by the forms for $n\geq 3$. This will imply that the set of integers $m$ such that $a_m\neq 0$ has natural density 0. We will deduce that the average value of the nonzero values of $a_m$ grows like $\sqrt{\log \, m}$.
DOI : 10.4064/aa171012-24-12
Keywords: homogeneous form varphi degree varphi which associated cyclotomic polynomial phi dubbed cyclotomic binary form positive integer said representable cyclotomic binary form there exist integers max varphi prove number representations cyclotomic binary form finite precisely have varphi log log max sqrt varphi description asymptotic cardinality set values taken forms geq imply set integers neq has natural density deduce average value nonzero values nbsp grows sqrt log

Étienne Fouvry 1 ; Claude Levesque 2 ; Michel Waldschmidt 3

1 Institut de Mathématique d’Orsay Université Paris-Sud CNRS, Université Paris-Saclay F-91405 Orsay, France
2 Département de mathématiques et de statistique Université Laval Québec, QC, Canada G1V 0A6
3 Sorbonne Université UPMC Univ Paris 06 UMR 7586 IMJ-PRG F-75005 Paris, France
@article{10_4064_aa171012_24_12,
     author = {\'Etienne Fouvry and Claude Levesque and Michel Waldschmidt},
     title = {Representation of integers by cyclotomic binary forms},
     journal = {Acta Arithmetica},
     pages = {67--86},
     publisher = {mathdoc},
     volume = {184},
     number = {1},
     year = {2018},
     doi = {10.4064/aa171012-24-12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa171012-24-12/}
}
TY  - JOUR
AU  - Étienne Fouvry
AU  - Claude Levesque
AU  - Michel Waldschmidt
TI  - Representation of integers by cyclotomic binary forms
JO  - Acta Arithmetica
PY  - 2018
SP  - 67
EP  - 86
VL  - 184
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa171012-24-12/
DO  - 10.4064/aa171012-24-12
LA  - en
ID  - 10_4064_aa171012_24_12
ER  - 
%0 Journal Article
%A Étienne Fouvry
%A Claude Levesque
%A Michel Waldschmidt
%T Representation of integers by cyclotomic binary forms
%J Acta Arithmetica
%D 2018
%P 67-86
%V 184
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa171012-24-12/
%R 10.4064/aa171012-24-12
%G en
%F 10_4064_aa171012_24_12
Étienne Fouvry; Claude Levesque; Michel Waldschmidt. Representation of integers by cyclotomic binary forms. Acta Arithmetica, Tome 184 (2018) no. 1, pp. 67-86. doi : 10.4064/aa171012-24-12. http://geodesic.mathdoc.fr/articles/10.4064/aa171012-24-12/

Cité par Sources :