Polynomials defining many units in function fields
Acta Arithmetica, Tome 190 (2019) no. 4, pp. 351-361.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We introduce the notion of polynomials defining units in the case of positive characteristic. We do this by using Carlitz cyclotomic theory. We then describe the polynomials defining infinitely many units, in the spirit of Broche and del Río (2016).
DOI : 10.4064/aa171010-8-10
Keywords: introduce notion polynomials defining units positive characteristic using carlitz cyclotomic theory describe polynomials defining infinitely many units spirit broche del

Mohamed El Kati 1 ; Hassan Oukhaba 1

1 Université de Bourgogne Franche-Comté Laboratoire de Mathématique (LMB) 16 Route de Gray 25030 Besançon Cedex, France
@article{10_4064_aa171010_8_10,
     author = {Mohamed El Kati and Hassan Oukhaba},
     title = {Polynomials defining many units in function fields},
     journal = {Acta Arithmetica},
     pages = {351--361},
     publisher = {mathdoc},
     volume = {190},
     number = {4},
     year = {2019},
     doi = {10.4064/aa171010-8-10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa171010-8-10/}
}
TY  - JOUR
AU  - Mohamed El Kati
AU  - Hassan Oukhaba
TI  - Polynomials defining many units in function fields
JO  - Acta Arithmetica
PY  - 2019
SP  - 351
EP  - 361
VL  - 190
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa171010-8-10/
DO  - 10.4064/aa171010-8-10
LA  - en
ID  - 10_4064_aa171010_8_10
ER  - 
%0 Journal Article
%A Mohamed El Kati
%A Hassan Oukhaba
%T Polynomials defining many units in function fields
%J Acta Arithmetica
%D 2019
%P 351-361
%V 190
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa171010-8-10/
%R 10.4064/aa171010-8-10
%G en
%F 10_4064_aa171010_8_10
Mohamed El Kati; Hassan Oukhaba. Polynomials defining many units in function fields. Acta Arithmetica, Tome 190 (2019) no. 4, pp. 351-361. doi : 10.4064/aa171010-8-10. http://geodesic.mathdoc.fr/articles/10.4064/aa171010-8-10/

Cité par Sources :