A family of cyclic quartic fields with explicit fundamental units
Acta Arithmetica, Tome 187 (2019) no. 1, pp. 43-57.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We construct a family of quartic polynomials with cyclic Galois group and show that the roots of the polynomials are fundamental units or generate a subgroup of index 5.
DOI : 10.4064/aa171010-23-8
Keywords: construct family quartic polynomials cyclic galois group roots polynomials fundamental units generate subgroup index

Steve Balady 1 ; Lawrence C. Washington 2

1 Department of Mathematics Oberlin College Oberlin, OH 44074, U.S.A.
2 Department of Mathematics University of Maryland College Park, MD 20742, U.S.A.
@article{10_4064_aa171010_23_8,
     author = {Steve Balady and Lawrence C. Washington},
     title = {A family of cyclic quartic fields with explicit fundamental units},
     journal = {Acta Arithmetica},
     pages = {43--57},
     publisher = {mathdoc},
     volume = {187},
     number = {1},
     year = {2019},
     doi = {10.4064/aa171010-23-8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa171010-23-8/}
}
TY  - JOUR
AU  - Steve Balady
AU  - Lawrence C. Washington
TI  - A family of cyclic quartic fields with explicit fundamental units
JO  - Acta Arithmetica
PY  - 2019
SP  - 43
EP  - 57
VL  - 187
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa171010-23-8/
DO  - 10.4064/aa171010-23-8
LA  - en
ID  - 10_4064_aa171010_23_8
ER  - 
%0 Journal Article
%A Steve Balady
%A Lawrence C. Washington
%T A family of cyclic quartic fields with explicit fundamental units
%J Acta Arithmetica
%D 2019
%P 43-57
%V 187
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa171010-23-8/
%R 10.4064/aa171010-23-8
%G en
%F 10_4064_aa171010_23_8
Steve Balady; Lawrence C. Washington. A family of cyclic quartic fields with explicit fundamental units. Acta Arithmetica, Tome 187 (2019) no. 1, pp. 43-57. doi : 10.4064/aa171010-23-8. http://geodesic.mathdoc.fr/articles/10.4064/aa171010-23-8/

Cité par Sources :