Some $q$-supercongruences for truncated basic hypergeometric series
Acta Arithmetica, Tome 171 (2015) no. 4, pp. 309-326
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
For any odd prime $p$ we obtain $q$-analogues of van Hamme's and
Rodriguez-Villegas' supercongruences involving products of three
binomial coefficients such as
\begin{align*}
\sum_{k=0}^{{(p-1)}/{2}} \bigg[{2k\atop k}\bigg]_{q^2}^3
\frac{q^{2k}}{(-q^2;q^2)_k^2 (-q;q)_{2k}^2}
\equiv 0 \pmod{[p]^2} \ \text{for}\ p\equiv 3 \pmod 4, \\
\sum_{k=0}^{{(p-1)}/{2}}\bigg[{2k\atop k}\bigg]_{q^3}\frac{(q;q^3)_k
(q^{2};q^3)_{k} q^{3k} }{ (q^{6};q^{6})_k^2 } \equiv 0
\pmod{[p]^2}\ \text{for}\ p\equiv 2 \pmod{3},
\end{align*}
where $[p]=1+q+\cdots+q^{p-1}$ and
$(a;q)_n=(1-a)(1-aq)\cdots(1-aq^{n-1})$. We also prove
$q$-analogues of the Sun brothers' generalizations of the above
supercongruences. Our proofs are elementary in nature and use the
theory of basic hypergeometric series and combinatorial $q$-binomial
identities including a new $q$-Clausen type summation formula.
Keywords:
odd prime obtain q analogues van hammes rodriguez villegas supercongruences involving products three binomial coefficients begin align* sum ffgrac p bigg atop bigg frac q q equiv pmod text equiv pmod sum ffgrac p bigg atop bigg frac equiv pmod text equiv pmod end align* where cdots p a aq cdots aq n prove q analogues sun brothers generalizations above supercongruences proofs elementary nature theory basic hypergeometric series combinatorial q binomial identities including q clausen type summation formula
Affiliations des auteurs :
Victor J. W. Guo 1 ; Jiang Zeng 2
@article{10_4064_aa171_4_2,
author = {Victor J. W. Guo and Jiang Zeng},
title = {Some $q$-supercongruences for truncated basic hypergeometric series},
journal = {Acta Arithmetica},
pages = {309--326},
publisher = {mathdoc},
volume = {171},
number = {4},
year = {2015},
doi = {10.4064/aa171-4-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa171-4-2/}
}
TY - JOUR AU - Victor J. W. Guo AU - Jiang Zeng TI - Some $q$-supercongruences for truncated basic hypergeometric series JO - Acta Arithmetica PY - 2015 SP - 309 EP - 326 VL - 171 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa171-4-2/ DO - 10.4064/aa171-4-2 LA - en ID - 10_4064_aa171_4_2 ER -
Victor J. W. Guo; Jiang Zeng. Some $q$-supercongruences for truncated basic hypergeometric series. Acta Arithmetica, Tome 171 (2015) no. 4, pp. 309-326. doi: 10.4064/aa171-4-2
Cité par Sources :