On the first sign change in Mertens' theorem
Acta Arithmetica, Tome 171 (2015) no. 2, pp. 183-195
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
The function $\sum_{p\leq x} 1/p - \log\log(x) - M$ is known to change
sign infinitely often, but so far all calculated values are positive. In this
paper we prove that the first sign change occurs well before $\exp(495.702833165)$.
Keywords:
function sum leq log log known change sign infinitely often far calculated values positive paper prove first sign change occurs before exp
Affiliations des auteurs :
Jan B\"uthe 1
@article{10_4064_aa171_2_5,
author = {Jan B\"uthe},
title = {On the first sign change in {Mertens'} theorem},
journal = {Acta Arithmetica},
pages = {183--195},
year = {2015},
volume = {171},
number = {2},
doi = {10.4064/aa171-2-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa171-2-5/}
}
Jan B\"uthe. On the first sign change in Mertens' theorem. Acta Arithmetica, Tome 171 (2015) no. 2, pp. 183-195. doi: 10.4064/aa171-2-5
Cité par Sources :