Quadratic congruences on average and
rational points on cubic surfaces
Acta Arithmetica, Tome 171 (2015) no. 2, pp. 145-171
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We investigate the average number of solutions of certain quadratic congruences. As an application, we establish Manin's conjecture for a cubic surface whose singularity type is ${\mathbf A}_5+{\mathbf A}_1$.
Keywords:
investigate average number solutions certain quadratic congruences application establish manins conjecture cubic surface whose singularity type mathbf mathbf
Affiliations des auteurs :
Stephan Baier 1 ; Ulrich Derenthal 2
@article{10_4064_aa171_2_3,
author = {Stephan Baier and Ulrich Derenthal},
title = {Quadratic congruences on average and
rational points on cubic surfaces},
journal = {Acta Arithmetica},
pages = {145--171},
year = {2015},
volume = {171},
number = {2},
doi = {10.4064/aa171-2-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa171-2-3/}
}
TY - JOUR AU - Stephan Baier AU - Ulrich Derenthal TI - Quadratic congruences on average and rational points on cubic surfaces JO - Acta Arithmetica PY - 2015 SP - 145 EP - 171 VL - 171 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/aa171-2-3/ DO - 10.4064/aa171-2-3 LA - en ID - 10_4064_aa171_2_3 ER -
Stephan Baier; Ulrich Derenthal. Quadratic congruences on average and rational points on cubic surfaces. Acta Arithmetica, Tome 171 (2015) no. 2, pp. 145-171. doi: 10.4064/aa171-2-3
Cité par Sources :