Number of solutions of cubic Thue inequalities with positive discriminant
Acta Arithmetica, Tome 171 (2015) no. 1, pp. 81-95
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $F(X,Y)$ be an irreducible binary cubic form with integer coefficients and positive discriminant $D$. Let $k$ be a positive integer satisfying \[ k\frac {(3D)^{1/4}}{2\pi }. \] We give improved upper bounds for the number of primitive solutions of the Thue inequality \[ |F(X,Y)|\leq k. \]
Keywords:
irreducible binary cubic form integer coefficients positive discriminant positive integer satisfying frac improved upper bounds number primitive solutions thue inequality leq
Affiliations des auteurs :
N. Saradha 1 ; Divyum Sharma 1
@article{10_4064_aa171_1_6,
author = {N. Saradha and Divyum Sharma},
title = {Number of solutions of cubic {Thue} inequalities with positive discriminant},
journal = {Acta Arithmetica},
pages = {81--95},
publisher = {mathdoc},
volume = {171},
number = {1},
year = {2015},
doi = {10.4064/aa171-1-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa171-1-6/}
}
TY - JOUR AU - N. Saradha AU - Divyum Sharma TI - Number of solutions of cubic Thue inequalities with positive discriminant JO - Acta Arithmetica PY - 2015 SP - 81 EP - 95 VL - 171 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa171-1-6/ DO - 10.4064/aa171-1-6 LA - en ID - 10_4064_aa171_1_6 ER -
N. Saradha; Divyum Sharma. Number of solutions of cubic Thue inequalities with positive discriminant. Acta Arithmetica, Tome 171 (2015) no. 1, pp. 81-95. doi: 10.4064/aa171-1-6
Cité par Sources :