New recurrence relations and matrix equations for arithmetic functions generated by Lambert series
Acta Arithmetica, Tome 181 (2017) no. 4, pp. 355-367
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We consider relations between the pairs of sequences $(f, g_f)$ generated by the Lambert series expansions $L_f(q) = \sum_{n \geq 1} f(n) q^n / (1-q^n)$ in $q$ where $g_f(m)$ is defined to be the coefficient of $q^m$ in $L_f(q)$. In particular, we prove new
recurrence relations and matrix equations defining these sequences for all $n \in \mathbb{Z}^{+}$. The key ingredient to the proofs is Euler’s pentagonal number theorem. Our new results include new exact formulas for and applications to the Euler phi function $\phi(n)$, the Möbius function $\mu(n)$, the sum-of-divisors functions $\sigma_1(n)$ and $\sigma_{\alpha}(n)$ for $\alpha \geq 0$ and Liouville’s lambda function $\lambda(n)$.
Keywords:
consider relations between pairs sequences generated lambert series expansions sum geq q where defined coefficient particular prove recurrence relations matrix equations defining these sequences mathbb key ingredient proofs euler pentagonal number theorem results include exact formulas applications euler phi function phi bius function sum of divisors functions sigma sigma alpha alpha geq liouville lambda function nbsp lambda
Affiliations des auteurs :
Maxie D. Schmidt 1
@article{10_4064_aa170217_4_8,
author = {Maxie D. Schmidt},
title = {New recurrence relations and matrix equations for arithmetic functions generated by {Lambert} series},
journal = {Acta Arithmetica},
pages = {355--367},
publisher = {mathdoc},
volume = {181},
number = {4},
year = {2017},
doi = {10.4064/aa170217-4-8},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa170217-4-8/}
}
TY - JOUR AU - Maxie D. Schmidt TI - New recurrence relations and matrix equations for arithmetic functions generated by Lambert series JO - Acta Arithmetica PY - 2017 SP - 355 EP - 367 VL - 181 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa170217-4-8/ DO - 10.4064/aa170217-4-8 LA - en ID - 10_4064_aa170217_4_8 ER -
%0 Journal Article %A Maxie D. Schmidt %T New recurrence relations and matrix equations for arithmetic functions generated by Lambert series %J Acta Arithmetica %D 2017 %P 355-367 %V 181 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/aa170217-4-8/ %R 10.4064/aa170217-4-8 %G en %F 10_4064_aa170217_4_8
Maxie D. Schmidt. New recurrence relations and matrix equations for arithmetic functions generated by Lambert series. Acta Arithmetica, Tome 181 (2017) no. 4, pp. 355-367. doi: 10.4064/aa170217-4-8
Cité par Sources :