New recurrence relations and matrix equations for arithmetic functions generated by Lambert series
Acta Arithmetica, Tome 181 (2017) no. 4, pp. 355-367.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We consider relations between the pairs of sequences $(f, g_f)$ generated by the Lambert series expansions $L_f(q) = \sum_{n \geq 1} f(n) q^n / (1-q^n)$ in $q$ where $g_f(m)$ is defined to be the coefficient of $q^m$ in $L_f(q)$. In particular, we prove new recurrence relations and matrix equations defining these sequences for all $n \in \mathbb{Z}^{+}$. The key ingredient to the proofs is Euler’s pentagonal number theorem. Our new results include new exact formulas for and applications to the Euler phi function $\phi(n)$, the Möbius function $\mu(n)$, the sum-of-divisors functions $\sigma_1(n)$ and $\sigma_{\alpha}(n)$ for $\alpha \geq 0$ and Liouville’s lambda function $\lambda(n)$.
DOI : 10.4064/aa170217-4-8
Keywords: consider relations between pairs sequences generated lambert series expansions sum geq q where defined coefficient particular prove recurrence relations matrix equations defining these sequences mathbb key ingredient proofs euler pentagonal number theorem results include exact formulas applications euler phi function phi bius function sum of divisors functions sigma sigma alpha alpha geq liouville lambda function nbsp lambda

Maxie D. Schmidt 1

1 School of Mathematics Georgia Institute of Technology Atlanta, GA 30332, U.S.A.
@article{10_4064_aa170217_4_8,
     author = {Maxie D. Schmidt},
     title = {New recurrence relations and matrix equations for arithmetic functions generated by {Lambert} series},
     journal = {Acta Arithmetica},
     pages = {355--367},
     publisher = {mathdoc},
     volume = {181},
     number = {4},
     year = {2017},
     doi = {10.4064/aa170217-4-8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa170217-4-8/}
}
TY  - JOUR
AU  - Maxie D. Schmidt
TI  - New recurrence relations and matrix equations for arithmetic functions generated by Lambert series
JO  - Acta Arithmetica
PY  - 2017
SP  - 355
EP  - 367
VL  - 181
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa170217-4-8/
DO  - 10.4064/aa170217-4-8
LA  - en
ID  - 10_4064_aa170217_4_8
ER  - 
%0 Journal Article
%A Maxie D. Schmidt
%T New recurrence relations and matrix equations for arithmetic functions generated by Lambert series
%J Acta Arithmetica
%D 2017
%P 355-367
%V 181
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa170217-4-8/
%R 10.4064/aa170217-4-8
%G en
%F 10_4064_aa170217_4_8
Maxie D. Schmidt. New recurrence relations and matrix equations for arithmetic functions generated by Lambert series. Acta Arithmetica, Tome 181 (2017) no. 4, pp. 355-367. doi : 10.4064/aa170217-4-8. http://geodesic.mathdoc.fr/articles/10.4064/aa170217-4-8/

Cité par Sources :