Estimating class numbers over metabelian extensions
Acta Arithmetica, Tome 180 (2017) no. 4, pp. 347-364
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let $p$ be an odd prime and $K_{\infty,\infty}/K$ a $p$-adic Lie extension whose Galois group is of the form $\mathbb Z_p^{d-1}\rtimes \mathbb Z_p$. Under certain assumptions on the ramification of $p$ and the structure of an Iwasawa module associated to $K_{\infty,\infty}$, we study the asymptotic behaviour of the size of the $p$-primary part of the ideal class groups over certain finite subextensions inside $K_{\infty,\infty}/K$. This generalizes the classical result of Iwasawa and Cuoco–Monsky in the abelian case and gives a more precise formula than a recent result of Perbet in the non-commutative case when $d=2$.
Keywords:
odd prime infty infty p adic lie extension whose galois group form mathbb d rtimes mathbb under certain assumptions ramification structure iwasawa module associated infty infty study asymptotic behaviour size p primary part ideal class groups certain finite subextensions inside infty infty generalizes classical result iwasawa cuoco monsky abelian gives precise formula recent result perbet non commutative
Affiliations des auteurs :
Antonio Lei 1
@article{10_4064_aa170216_27_4,
author = {Antonio Lei},
title = {Estimating class numbers over metabelian extensions},
journal = {Acta Arithmetica},
pages = {347--364},
year = {2017},
volume = {180},
number = {4},
doi = {10.4064/aa170216-27-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa170216-27-4/}
}
Antonio Lei. Estimating class numbers over metabelian extensions. Acta Arithmetica, Tome 180 (2017) no. 4, pp. 347-364. doi: 10.4064/aa170216-27-4
Cité par Sources :