Distinguishing finite group characters and refined local-global phenomena
Acta Arithmetica, Tome 179 (2017) no. 3, pp. 277-300
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Serre obtained a sharp bound on how often two irreducible degree $n$ complex
characters of a finite group can agree, which tells us how many local
factors determine an Artin $L$-function. We consider the more delicate question of finding a sharp bound when these objects are primitive, and answer this question for $n=2,3$.
This provides some insight on refined strong multiplicity one phenomena for automorphic representations of $\operatorname{GL}(n)$. For general $n$, we also answer the character question for the families $\operatorname{PSL}(2,q)$ and $\operatorname{SL}(2,q)$.
Keywords:
serre obtained sharp bound often irreducible degree complex characters finite group agree which tells many local factors determine artin l function consider delicate question finding sharp bound these objects primitive answer question provides insight refined strong multiplicity phenomena automorphic representations operatorname general answer character question families operatorname psl operatorname
Affiliations des auteurs :
Kimball Martin 1 ; Nahid Walji 2
@article{10_4064_aa170120_1_5,
author = {Kimball Martin and Nahid Walji},
title = {Distinguishing finite group characters and refined local-global phenomena},
journal = {Acta Arithmetica},
pages = {277--300},
publisher = {mathdoc},
volume = {179},
number = {3},
year = {2017},
doi = {10.4064/aa170120-1-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa170120-1-5/}
}
TY - JOUR AU - Kimball Martin AU - Nahid Walji TI - Distinguishing finite group characters and refined local-global phenomena JO - Acta Arithmetica PY - 2017 SP - 277 EP - 300 VL - 179 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa170120-1-5/ DO - 10.4064/aa170120-1-5 LA - en ID - 10_4064_aa170120_1_5 ER -
%0 Journal Article %A Kimball Martin %A Nahid Walji %T Distinguishing finite group characters and refined local-global phenomena %J Acta Arithmetica %D 2017 %P 277-300 %V 179 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/aa170120-1-5/ %R 10.4064/aa170120-1-5 %G en %F 10_4064_aa170120_1_5
Kimball Martin; Nahid Walji. Distinguishing finite group characters and refined local-global phenomena. Acta Arithmetica, Tome 179 (2017) no. 3, pp. 277-300. doi: 10.4064/aa170120-1-5
Cité par Sources :