Distinguishing finite group characters and refined local-global phenomena
Acta Arithmetica, Tome 179 (2017) no. 3, pp. 277-300.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Serre obtained a sharp bound on how often two irreducible degree $n$ complex characters of a finite group can agree, which tells us how many local factors determine an Artin $L$-function. We consider the more delicate question of finding a sharp bound when these objects are primitive, and answer this question for $n=2,3$. This provides some insight on refined strong multiplicity one phenomena for automorphic representations of $\operatorname{GL}(n)$. For general $n$, we also answer the character question for the families $\operatorname{PSL}(2,q)$ and $\operatorname{SL}(2,q)$.
DOI : 10.4064/aa170120-1-5
Keywords: serre obtained sharp bound often irreducible degree complex characters finite group agree which tells many local factors determine artin l function consider delicate question finding sharp bound these objects primitive answer question provides insight refined strong multiplicity phenomena automorphic representations operatorname general answer character question families operatorname psl operatorname

Kimball Martin 1 ; Nahid Walji 2

1 Department of Mathematics University of Oklahoma Norman, OK 73019, U.S.A.
2 The American University of Paris 75007 Paris, France
@article{10_4064_aa170120_1_5,
     author = {Kimball Martin and Nahid Walji},
     title = {Distinguishing finite group characters and refined local-global phenomena},
     journal = {Acta Arithmetica},
     pages = {277--300},
     publisher = {mathdoc},
     volume = {179},
     number = {3},
     year = {2017},
     doi = {10.4064/aa170120-1-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa170120-1-5/}
}
TY  - JOUR
AU  - Kimball Martin
AU  - Nahid Walji
TI  - Distinguishing finite group characters and refined local-global phenomena
JO  - Acta Arithmetica
PY  - 2017
SP  - 277
EP  - 300
VL  - 179
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa170120-1-5/
DO  - 10.4064/aa170120-1-5
LA  - en
ID  - 10_4064_aa170120_1_5
ER  - 
%0 Journal Article
%A Kimball Martin
%A Nahid Walji
%T Distinguishing finite group characters and refined local-global phenomena
%J Acta Arithmetica
%D 2017
%P 277-300
%V 179
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa170120-1-5/
%R 10.4064/aa170120-1-5
%G en
%F 10_4064_aa170120_1_5
Kimball Martin; Nahid Walji. Distinguishing finite group characters and refined local-global phenomena. Acta Arithmetica, Tome 179 (2017) no. 3, pp. 277-300. doi : 10.4064/aa170120-1-5. http://geodesic.mathdoc.fr/articles/10.4064/aa170120-1-5/

Cité par Sources :