Non-parametricity of rational translates of regular Galois extensions
Acta Arithmetica, Tome 179 (2017) no. 3, pp. 267-275.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We generalize a result of F. Legrand about the existence of non-parametric Galois extensions for a given group $G$. More precisely, for a $K$-regular Galois extension $F|K(t)$, we consider the translates $F(s)|K(s)$ by an extension $K(s)|K(t)$ of rational function fields (in other words, $s$ is a root of $g(X)-t$ for some rational function $g\in K(X)$). We then show that if $F|K(t)$ is a $K$-regular Galois extension with group $G$ over a number field $K$, then for any degree $k\ge 2$ and almost all (in a density sense) rational functions $g$ of degree $k$, the translate of $F$ by a root field of $g(X)-t$ over $K(t)$ is non-$G$-parametric, i.e. not all Galois extensions of $K$ with group $G$ arise as specializations of $F(s)|K(s)$.
DOI : 10.4064/aa170112-15-5
Keywords: generalize result nbsp legrand about existence non parametric galois extensions given group precisely k regular galois extension consider translates extension rational function fields other words root t rational function k regular galois extension group number field nbsp degree almost density sense rational functions degree nbsp translate root field t non g parametric galois extensions group arise specializations

Joachim König 1

1 Technion I.I.T. 32000 Haifa, Israel
@article{10_4064_aa170112_15_5,
     author = {Joachim K\"onig},
     title = {Non-parametricity of rational translates of regular {Galois} extensions},
     journal = {Acta Arithmetica},
     pages = {267--275},
     publisher = {mathdoc},
     volume = {179},
     number = {3},
     year = {2017},
     doi = {10.4064/aa170112-15-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa170112-15-5/}
}
TY  - JOUR
AU  - Joachim König
TI  - Non-parametricity of rational translates of regular Galois extensions
JO  - Acta Arithmetica
PY  - 2017
SP  - 267
EP  - 275
VL  - 179
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa170112-15-5/
DO  - 10.4064/aa170112-15-5
LA  - en
ID  - 10_4064_aa170112_15_5
ER  - 
%0 Journal Article
%A Joachim König
%T Non-parametricity of rational translates of regular Galois extensions
%J Acta Arithmetica
%D 2017
%P 267-275
%V 179
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa170112-15-5/
%R 10.4064/aa170112-15-5
%G en
%F 10_4064_aa170112_15_5
Joachim König. Non-parametricity of rational translates of regular Galois extensions. Acta Arithmetica, Tome 179 (2017) no. 3, pp. 267-275. doi : 10.4064/aa170112-15-5. http://geodesic.mathdoc.fr/articles/10.4064/aa170112-15-5/

Cité par Sources :