On the Riesz means of $\frac {n}{\phi (n)}$ – III
Acta Arithmetica, Tome 170 (2015) no. 3, pp. 275-286
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $\phi (n)$ denote the Euler totient function. We study the error term of the general $k$th Riesz mean of the arithmetical function ${n/\phi (n)}$ for any positive integer $k \ge 1$, namely the error term $E_k(x)$ where
$$
\frac{1}{k!}\sum_{n \leq x}\frac{n}{\phi(n)} \left( 1-\frac{n}{x} \right)^{\!k}
= M_k(x) + E_k(x). $$ For instance, the upper bound for $ | E_k(x) |$ established here improves the earlier known upper bounds for all integers $k$ satisfying $k\gg (\log x)^{1+\epsilon }$.
Keywords:
phi denote euler totient function study error term general kth riesz mean arithmetical function phi positive integer namely error term where frac sum leq frac phi frac right instance upper bound established here improves earlier known upper bounds integers satisfying log epsilon
Affiliations des auteurs :
Ayyadurai Sankaranarayanan 1 ; Saurabh Kumar Singh 1
@article{10_4064_aa170_3_4,
author = {Ayyadurai Sankaranarayanan and Saurabh Kumar Singh},
title = {On the {Riesz} means of $\frac {n}{\phi (n)}$ {\textendash} {III}},
journal = {Acta Arithmetica},
pages = {275--286},
publisher = {mathdoc},
volume = {170},
number = {3},
year = {2015},
doi = {10.4064/aa170-3-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa170-3-4/}
}
TY - JOUR
AU - Ayyadurai Sankaranarayanan
AU - Saurabh Kumar Singh
TI - On the Riesz means of $\frac {n}{\phi (n)}$ – III
JO - Acta Arithmetica
PY - 2015
SP - 275
EP - 286
VL - 170
IS - 3
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.4064/aa170-3-4/
DO - 10.4064/aa170-3-4
LA - en
ID - 10_4064_aa170_3_4
ER -
Ayyadurai Sankaranarayanan; Saurabh Kumar Singh. On the Riesz means of $\frac {n}{\phi (n)}$ – III. Acta Arithmetica, Tome 170 (2015) no. 3, pp. 275-286. doi: 10.4064/aa170-3-4
Cité par Sources :