Fonctions digitales le long des nombres premiers
Acta Arithmetica, Tome 170 (2015) no. 2, pp. 175-197
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
In a recent work we gave some estimations for exponential sums of the form
$\sum_{n\le x} \varLambda(n) \exp(2i\pi (f(n) + \beta n)), $
where $\varLambda$ denotes the von Mangoldt function, $f$ a digital function, and $\beta$ a real parameter.
The aim of this work is to show how these results can be used to study the statistical properties of digital functions along prime numbers.
Mots-clés :
recent work gave estimations exponential sums form sum varlambda exp beta where varlambda denotes von mangoldt function digital function beta real parameter work these results study statistical properties digital functions along prime numbers
Affiliations des auteurs :
Bruno Martin 1 ; Christian Mauduit 2 ; Joël Rivat 3
@article{10_4064_aa170_2_5,
author = {Bruno Martin and Christian Mauduit and Jo\"el Rivat},
title = {Fonctions digitales le long des nombres premiers},
journal = {Acta Arithmetica},
pages = {175--197},
publisher = {mathdoc},
volume = {170},
number = {2},
year = {2015},
doi = {10.4064/aa170-2-5},
language = {fr},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa170-2-5/}
}
TY - JOUR AU - Bruno Martin AU - Christian Mauduit AU - Joël Rivat TI - Fonctions digitales le long des nombres premiers JO - Acta Arithmetica PY - 2015 SP - 175 EP - 197 VL - 170 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa170-2-5/ DO - 10.4064/aa170-2-5 LA - fr ID - 10_4064_aa170_2_5 ER -
Bruno Martin; Christian Mauduit; Joël Rivat. Fonctions digitales le long des nombres premiers. Acta Arithmetica, Tome 170 (2015) no. 2, pp. 175-197. doi: 10.4064/aa170-2-5
Cité par Sources :