On metric theory of Diophantine approximation for complex numbers
Acta Arithmetica, Tome 170 (2015) no. 1, pp. 27-46.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

In 1941, R. J. Duffin and A. C. Schaeffer conjectured that for the inequality $|\alpha - m/n| \psi(n)/n$ with ${\rm g.c.d.}(m,n) = 1$, there are infinitely many solutions in positive integers $m$ and $n$ for almost all $\alpha \in \mathbb{R}$ if and only if $\sum_{n=2}^{\infty}\phi(n)\psi(n)/n = \infty$. As one of partial results, in 1978, J. D. Vaaler proved this conjecture under the additional condition $\psi(n) = \mathcal O(n^{-1})$. In this paper, we discuss the metric theory of Diophantine approximation over the imaginary quadratic field $\mathbb{Q}(\sqrt{d})$ with a square-free integer $d 0$, and show that a Vaaler type theorem holds in this case.
DOI : 10.4064/aa170-1-3
Keywords: duffin schaeffer conjectured inequality alpha psi there infinitely many solutions positive integers almost alpha mathbb only sum infty phi psi infty partial results vaaler proved conjecture under additional condition psi mathcal paper discuss metric theory diophantine approximation imaginary quadratic field mathbb sqrt square free integer vaaler type theorem holds

Zhengyu Chen 1

1 Department of Mathematics Keio University Hiyoshi 3-14-1, Kohoku-ku Yokohama, Kanagawa 223-8522, Japan
@article{10_4064_aa170_1_3,
     author = {Zhengyu Chen},
     title = {On metric theory of {Diophantine} approximation
 for complex numbers},
     journal = {Acta Arithmetica},
     pages = {27--46},
     publisher = {mathdoc},
     volume = {170},
     number = {1},
     year = {2015},
     doi = {10.4064/aa170-1-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa170-1-3/}
}
TY  - JOUR
AU  - Zhengyu Chen
TI  - On metric theory of Diophantine approximation
 for complex numbers
JO  - Acta Arithmetica
PY  - 2015
SP  - 27
EP  - 46
VL  - 170
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa170-1-3/
DO  - 10.4064/aa170-1-3
LA  - en
ID  - 10_4064_aa170_1_3
ER  - 
%0 Journal Article
%A Zhengyu Chen
%T On metric theory of Diophantine approximation
 for complex numbers
%J Acta Arithmetica
%D 2015
%P 27-46
%V 170
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa170-1-3/
%R 10.4064/aa170-1-3
%G en
%F 10_4064_aa170_1_3
Zhengyu Chen. On metric theory of Diophantine approximation
 for complex numbers. Acta Arithmetica, Tome 170 (2015) no. 1, pp. 27-46. doi : 10.4064/aa170-1-3. http://geodesic.mathdoc.fr/articles/10.4064/aa170-1-3/

Cité par Sources :