On metric theory of Diophantine approximation
for complex numbers
Acta Arithmetica, Tome 170 (2015) no. 1, pp. 27-46
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
In 1941, R. J. Duffin and A. C. Schaeffer conjectured that for the inequality $|\alpha - m/n| \psi(n)/n$ with ${\rm g.c.d.}(m,n) = 1$, there are infinitely many solutions in positive integers $m$ and $n$ for almost all $\alpha \in \mathbb{R}$ if and only if $\sum_{n=2}^{\infty}\phi(n)\psi(n)/n = \infty$. As one of partial results, in 1978, J. D. Vaaler proved this conjecture under the additional condition $\psi(n) = \mathcal O(n^{-1})$. In this paper, we discuss the metric theory of Diophantine approximation over the imaginary quadratic field $\mathbb{Q}(\sqrt{d})$ with a square-free integer $d 0$, and show that a Vaaler type theorem holds in this case.
Keywords:
duffin schaeffer conjectured inequality alpha psi there infinitely many solutions positive integers almost alpha mathbb only sum infty phi psi infty partial results vaaler proved conjecture under additional condition psi mathcal paper discuss metric theory diophantine approximation imaginary quadratic field mathbb sqrt square free integer vaaler type theorem holds
Affiliations des auteurs :
Zhengyu Chen 1
@article{10_4064_aa170_1_3,
author = {Zhengyu Chen},
title = {On metric theory of {Diophantine} approximation
for complex numbers},
journal = {Acta Arithmetica},
pages = {27--46},
year = {2015},
volume = {170},
number = {1},
doi = {10.4064/aa170-1-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa170-1-3/}
}
Zhengyu Chen. On metric theory of Diophantine approximation for complex numbers. Acta Arithmetica, Tome 170 (2015) no. 1, pp. 27-46. doi: 10.4064/aa170-1-3
Cité par Sources :