Stabilization in non-abelian Iwasawa theory
Acta Arithmetica, Tome 169 (2015) no. 4, pp. 319-329
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $K/k$ be a $\mathbb {Z}_p$-extension of a number field $k$, and denote by $k_n$ its layers. We prove some stabilization properties for the orders and the $p$-ranks of the higher Iwasawa modules arising from the lower central series of the Galois group of the maximal unramified pro-$p$-extension of $K$ (resp. of the $k_n$).
Keywords:
mathbb p extension number field denote its layers prove stabilization properties orders p ranks higher iwasawa modules arising lower central series galois group maximal unramified pro p extension resp
Affiliations des auteurs :
Andrea Bandini 1 ; Fabio Caldarola 2
@article{10_4064_aa169_4_2,
author = {Andrea Bandini and Fabio Caldarola},
title = {Stabilization in non-abelian {Iwasawa} theory},
journal = {Acta Arithmetica},
pages = {319--329},
publisher = {mathdoc},
volume = {169},
number = {4},
year = {2015},
doi = {10.4064/aa169-4-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa169-4-2/}
}
Andrea Bandini; Fabio Caldarola. Stabilization in non-abelian Iwasawa theory. Acta Arithmetica, Tome 169 (2015) no. 4, pp. 319-329. doi: 10.4064/aa169-4-2
Cité par Sources :