Plus grand facteur premier de valeurs de polynômes aux entiers
Acta Arithmetica, Tome 169 (2015) no. 3, pp. 221-250
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $P^+(n)$ denote the largest prime factor of the integer $n$. Using the Heath-Brown and Dartyge methods, we prove that for any even unitary irreducible quartic polynomial $\varPhi $ with integral coefficients and the associated Galois group isomorphic to $V_4$, there exists a positive constant $c_\varPhi $ such that the set of integers $n\leq X$ satisfying $P^+ ( \varPhi (n) )\geq X^{1+c_\varPhi } $ has a positive density. Such a result was recently proved by Dartyge for $\varPhi (n)=n^4-n^2+1$. There is an appendix written with Jean-François Mestre.
Mots-clés :
denote largest prime factor integer using heath brown dartyge methods prove even unitary irreducible quartic polynomial varphi integral coefficients associated galois group isomorphic there exists positive constant varphi set integers leq satisfying varphi geq varphi has positive density result recently proved dartyge varphi n there appendix written jean fran ois mestre
Affiliations des auteurs :
R. de la Bretèche 1
@article{10_4064_aa169_3_2,
author = {R. de la Bret\`eche},
title = {Plus grand facteur premier de valeurs de polyn\^omes aux entiers},
journal = {Acta Arithmetica},
pages = {221--250},
publisher = {mathdoc},
volume = {169},
number = {3},
year = {2015},
doi = {10.4064/aa169-3-2},
language = {fr},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa169-3-2/}
}
R. de la Bretèche. Plus grand facteur premier de valeurs de polynômes aux entiers. Acta Arithmetica, Tome 169 (2015) no. 3, pp. 221-250. doi: 10.4064/aa169-3-2
Cité par Sources :