On a sum involving the Möbius function
Acta Arithmetica, Tome 169 (2015) no. 2, pp. 149-168.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $c_{q}(n)$ be the Ramanujan sum, i.e. $c_{q}(n)=\sum_{d|(q,n)}d \mu(q/d)$, where $\mu$ is the Möbius function. In a paper of Chan and Kumchev (2012), asymptotic formulas for $\sum_{n\leq y}(\sum_{q\leq x}c_{q}(n))^{k}$ ($k=1,2$) are obtained. As an analogous problem, we evaluate $\sum_{n\leq y}(\sum_{n\leq x}\widehat{c}_{q}(n))^{k}$ ($k=1,2$), where $\widehat{c}_{q}(n):=\sum_{d|(q,n)}d|\mu(q/d)|$.
DOI : 10.4064/aa169-2-3
Keywords: ramanujan sum sum where bius function paper chan kumchev asymptotic formulas sum leq sum leq obtained analogous problem evaluate sum leq sum leq widehat where widehat sum

I. Kiuchi 1 ; M. Minamide 1 ; Y. Tanigawa 2

1 Department of Mathematical Sciences Faculty of Science Yamaguchi University Yoshida 1677-1 Yamaguchi 753-8512, Japan
2 Graduate School of Mathematics Nagoya University Nagoya 464-8602, Japan
@article{10_4064_aa169_2_3,
     author = {I. Kiuchi and M. Minamide and Y. Tanigawa},
     title = {On a sum involving the {M\"obius} function},
     journal = {Acta Arithmetica},
     pages = {149--168},
     publisher = {mathdoc},
     volume = {169},
     number = {2},
     year = {2015},
     doi = {10.4064/aa169-2-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa169-2-3/}
}
TY  - JOUR
AU  - I. Kiuchi
AU  - M. Minamide
AU  - Y. Tanigawa
TI  - On a sum involving the Möbius function
JO  - Acta Arithmetica
PY  - 2015
SP  - 149
EP  - 168
VL  - 169
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa169-2-3/
DO  - 10.4064/aa169-2-3
LA  - en
ID  - 10_4064_aa169_2_3
ER  - 
%0 Journal Article
%A I. Kiuchi
%A M. Minamide
%A Y. Tanigawa
%T On a sum involving the Möbius function
%J Acta Arithmetica
%D 2015
%P 149-168
%V 169
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa169-2-3/
%R 10.4064/aa169-2-3
%G en
%F 10_4064_aa169_2_3
I. Kiuchi; M. Minamide; Y. Tanigawa. On a sum involving the Möbius function. Acta Arithmetica, Tome 169 (2015) no. 2, pp. 149-168. doi : 10.4064/aa169-2-3. http://geodesic.mathdoc.fr/articles/10.4064/aa169-2-3/

Cité par Sources :