On a sum involving the Möbius function
Acta Arithmetica, Tome 169 (2015) no. 2, pp. 149-168
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $c_{q}(n)$ be the Ramanujan sum, i.e. $c_{q}(n)=\sum_{d|(q,n)}d \mu(q/d)$, where $\mu$ is the Möbius function. In a paper of
Chan and Kumchev (2012), asymptotic formulas for $\sum_{n\leq y}(\sum_{q\leq x}c_{q}(n))^{k}$ ($k=1,2$) are obtained.
As an analogous problem, we evaluate $\sum_{n\leq y}(\sum_{n\leq x}\widehat{c}_{q}(n))^{k}$ ($k=1,2$),
where $\widehat{c}_{q}(n):=\sum_{d|(q,n)}d|\mu(q/d)|$.
Keywords:
ramanujan sum sum where bius function paper chan kumchev asymptotic formulas sum leq sum leq obtained analogous problem evaluate sum leq sum leq widehat where widehat sum
Affiliations des auteurs :
I. Kiuchi 1 ; M. Minamide 1 ; Y. Tanigawa 2
@article{10_4064_aa169_2_3,
author = {I. Kiuchi and M. Minamide and Y. Tanigawa},
title = {On a sum involving the {M\"obius} function},
journal = {Acta Arithmetica},
pages = {149--168},
publisher = {mathdoc},
volume = {169},
number = {2},
year = {2015},
doi = {10.4064/aa169-2-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa169-2-3/}
}
TY - JOUR AU - I. Kiuchi AU - M. Minamide AU - Y. Tanigawa TI - On a sum involving the Möbius function JO - Acta Arithmetica PY - 2015 SP - 149 EP - 168 VL - 169 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa169-2-3/ DO - 10.4064/aa169-2-3 LA - en ID - 10_4064_aa169_2_3 ER -
I. Kiuchi; M. Minamide; Y. Tanigawa. On a sum involving the Möbius function. Acta Arithmetica, Tome 169 (2015) no. 2, pp. 149-168. doi: 10.4064/aa169-2-3
Cité par Sources :