Commutative algebraic groups and $p$-adic linear forms
Acta Arithmetica, Tome 169 (2015) no. 2, pp. 115-147.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $G$ be a commutative algebraic group defined over a number field $K$ that is disjoint over $K$ from $\mathbb G_{\rm a}$ and satisfies the condition of semistability. Consider a linear form $l$ on the Lie algebra of $G$ with algebraic coefficients and an algebraic point $u$ in a $p$-adic neighbourhood of the origin with the condition that $l$ does not vanish at $u$. We give a lower bound for the $p$-adic absolute value of $l(u)$ which depends up to an effectively computable constant only on the height of the linear form, the height of the point $u$ and $p$.
DOI : 10.4064/aa169-2-2
Keywords: commutative algebraic group defined number field disjoint mathbb satisfies condition semistability consider linear form lie algebra algebraic coefficients algebraic point p adic neighbourhood origin condition does vanish lower bound p adic absolute value which depends effectively computable constant only height linear form height point nbsp

Clemens Fuchs 1 ; Duc Hiep Pham 2

1 Department of Mathematics University of Salzburg Hellbrunnerstr. 34 5020 Salzburg, Austria
2 Department of Mathematics Hanoi National University of Education 136 Xuan Thuy, Cau Giay Hanoi, Vietnam
@article{10_4064_aa169_2_2,
     author = {Clemens Fuchs and Duc Hiep Pham},
     title = {Commutative algebraic groups and $p$-adic linear forms},
     journal = {Acta Arithmetica},
     pages = {115--147},
     publisher = {mathdoc},
     volume = {169},
     number = {2},
     year = {2015},
     doi = {10.4064/aa169-2-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa169-2-2/}
}
TY  - JOUR
AU  - Clemens Fuchs
AU  - Duc Hiep Pham
TI  - Commutative algebraic groups and $p$-adic linear forms
JO  - Acta Arithmetica
PY  - 2015
SP  - 115
EP  - 147
VL  - 169
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa169-2-2/
DO  - 10.4064/aa169-2-2
LA  - en
ID  - 10_4064_aa169_2_2
ER  - 
%0 Journal Article
%A Clemens Fuchs
%A Duc Hiep Pham
%T Commutative algebraic groups and $p$-adic linear forms
%J Acta Arithmetica
%D 2015
%P 115-147
%V 169
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa169-2-2/
%R 10.4064/aa169-2-2
%G en
%F 10_4064_aa169_2_2
Clemens Fuchs; Duc Hiep Pham. Commutative algebraic groups and $p$-adic linear forms. Acta Arithmetica, Tome 169 (2015) no. 2, pp. 115-147. doi : 10.4064/aa169-2-2. http://geodesic.mathdoc.fr/articles/10.4064/aa169-2-2/

Cité par Sources :