Indices of subfields of cyclotomic ${\mathbb Z}_p$-extensions and higher degree Fermat quotients
Acta Arithmetica, Tome 169 (2015) no. 2, pp. 101-114
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We consider the indices of subfields of cyclotomic ${\mathbb Z}_p$-extensions of number fields. For the $n$th layer $K_n$ of the cyclotomic ${\mathbb Z}_p$-extension of ${\mathbb Q}$, we find that the prime factors of the index of $K_n/{\mathbb Q}$ are those primes less than the extension degree $p^n$ which split completely in $K_n$. Namely, the prime factor $q$ satisfies $q^{p-1}\equiv 1 ({\rm mod} p^{n+1})$, and this leads us to consider higher degree Fermat quotients. Indices of subfields of cyclotomic ${\mathbb Z}_p$-extensions of a number field which is cyclic over ${\mathbb Q}$ with extension degree a prime different from $p$ are also considered.
Keywords:
consider indices subfields cyclotomic mathbb p extensions number fields nth layer cyclotomic mathbb p extension mathbb prime factors index mathbb those primes extension degree which split completely namely prime factor satisfies p equiv nbsp mod nbsp leads consider higher degree fermat quotients indices subfields cyclotomic mathbb p extensions number field which cyclic mathbb extension degree prime different considered
Affiliations des auteurs :
Yoko Inoue 1 ; Kaori Ota 1
@article{10_4064_aa169_2_1,
author = {Yoko Inoue and Kaori Ota},
title = {Indices of subfields of cyclotomic ${\mathbb Z}_p$-extensions and higher degree {Fermat} quotients},
journal = {Acta Arithmetica},
pages = {101--114},
year = {2015},
volume = {169},
number = {2},
doi = {10.4064/aa169-2-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa169-2-1/}
}
TY - JOUR
AU - Yoko Inoue
AU - Kaori Ota
TI - Indices of subfields of cyclotomic ${\mathbb Z}_p$-extensions and higher degree Fermat quotients
JO - Acta Arithmetica
PY - 2015
SP - 101
EP - 114
VL - 169
IS - 2
UR - http://geodesic.mathdoc.fr/articles/10.4064/aa169-2-1/
DO - 10.4064/aa169-2-1
LA - en
ID - 10_4064_aa169_2_1
ER -
%0 Journal Article
%A Yoko Inoue
%A Kaori Ota
%T Indices of subfields of cyclotomic ${\mathbb Z}_p$-extensions and higher degree Fermat quotients
%J Acta Arithmetica
%D 2015
%P 101-114
%V 169
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4064/aa169-2-1/
%R 10.4064/aa169-2-1
%G en
%F 10_4064_aa169_2_1
Yoko Inoue; Kaori Ota. Indices of subfields of cyclotomic ${\mathbb Z}_p$-extensions and higher degree Fermat quotients. Acta Arithmetica, Tome 169 (2015) no. 2, pp. 101-114. doi: 10.4064/aa169-2-1
Cité par Sources :