Indices of subfields of cyclotomic ${\mathbb Z}_p$-extensions and higher degree Fermat quotients
Acta Arithmetica, Tome 169 (2015) no. 2, pp. 101-114.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We consider the indices of subfields of cyclotomic ${\mathbb Z}_p$-extensions of number fields. For the $n$th layer $K_n$ of the cyclotomic ${\mathbb Z}_p$-extension of ${\mathbb Q}$, we find that the prime factors of the index of $K_n/{\mathbb Q}$ are those primes less than the extension degree $p^n$ which split completely in $K_n$. Namely, the prime factor $q$ satisfies $q^{p-1}\equiv 1  ({\rm mod} p^{n+1})$, and this leads us to consider higher degree Fermat quotients. Indices of subfields of cyclotomic ${\mathbb Z}_p$-extensions of a number field which is cyclic over ${\mathbb Q}$ with extension degree a prime different from $p$ are also considered.
DOI : 10.4064/aa169-2-1
Keywords: consider indices subfields cyclotomic mathbb p extensions number fields nth layer cyclotomic mathbb p extension mathbb prime factors index mathbb those primes extension degree which split completely namely prime factor satisfies p equiv nbsp mod nbsp leads consider higher degree fermat quotients indices subfields cyclotomic mathbb p extensions number field which cyclic mathbb extension degree prime different considered

Yoko Inoue 1 ; Kaori Ota 1

1 Department of Mathematics Tsuda College 2-1-1 Tsuda-cho, Kodaira-shi, Tokyo 187-8577, Japan
@article{10_4064_aa169_2_1,
     author = {Yoko Inoue and Kaori Ota},
     title = {Indices of subfields of cyclotomic ${\mathbb Z}_p$-extensions and higher degree {Fermat} quotients},
     journal = {Acta Arithmetica},
     pages = {101--114},
     publisher = {mathdoc},
     volume = {169},
     number = {2},
     year = {2015},
     doi = {10.4064/aa169-2-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa169-2-1/}
}
TY  - JOUR
AU  - Yoko Inoue
AU  - Kaori Ota
TI  - Indices of subfields of cyclotomic ${\mathbb Z}_p$-extensions and higher degree Fermat quotients
JO  - Acta Arithmetica
PY  - 2015
SP  - 101
EP  - 114
VL  - 169
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa169-2-1/
DO  - 10.4064/aa169-2-1
LA  - en
ID  - 10_4064_aa169_2_1
ER  - 
%0 Journal Article
%A Yoko Inoue
%A Kaori Ota
%T Indices of subfields of cyclotomic ${\mathbb Z}_p$-extensions and higher degree Fermat quotients
%J Acta Arithmetica
%D 2015
%P 101-114
%V 169
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa169-2-1/
%R 10.4064/aa169-2-1
%G en
%F 10_4064_aa169_2_1
Yoko Inoue; Kaori Ota. Indices of subfields of cyclotomic ${\mathbb Z}_p$-extensions and higher degree Fermat quotients. Acta Arithmetica, Tome 169 (2015) no. 2, pp. 101-114. doi : 10.4064/aa169-2-1. http://geodesic.mathdoc.fr/articles/10.4064/aa169-2-1/

Cité par Sources :