Modular embeddings and rigidity for Fuchsian groups
Acta Arithmetica, Tome 169 (2015) no. 1, pp. 77-100
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove a rigidity theorem for semiarithmetic Fuchsian groups: If $\varGamma_1$, $\varGamma_2$ are two semiarithmetic lattices in ${\rm PSL}(2,\mathbb R )$ virtually admitting modular embeddings, and $f\colon\varGamma_1\to\varGamma_2$ is a group isomorphism that respects the notion of congruence subgroups, then $f$ is induced by an inner automorphism of ${\rm PGL}(2,\mathbb R )$.
Keywords:
prove rigidity theorem semiarithmetic fuchsian groups vargamma vargamma semiarithmetic lattices psl mathbb virtually admitting modular embeddings colon vargamma vargamma group isomorphism respects notion congruence subgroups induced inner automorphism nbsp pgl mathbb
Affiliations des auteurs :
Robert A. Kucharczyk 1
@article{10_4064_aa169_1_5,
author = {Robert A. Kucharczyk},
title = {Modular embeddings and rigidity for {Fuchsian} groups},
journal = {Acta Arithmetica},
pages = {77--100},
publisher = {mathdoc},
volume = {169},
number = {1},
year = {2015},
doi = {10.4064/aa169-1-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa169-1-5/}
}
Robert A. Kucharczyk. Modular embeddings and rigidity for Fuchsian groups. Acta Arithmetica, Tome 169 (2015) no. 1, pp. 77-100. doi: 10.4064/aa169-1-5
Cité par Sources :