On a conjecture of Sárközy and Szemerédi
Acta Arithmetica, Tome 169 (2015) no. 1, pp. 47-58.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Two infinite sequences $A$ and $B$ of non-negative integers are called infinite additive complements if their sum contains all sufficiently large integers. In 1994, Sárközy and Szemerédi conjectured that there exist infinite additive complements $A$ and $B$ with $\limsup A(x)B(x)/x\le 1$ and $A(x)B(x)-x=O(\min\{ A(x),B(x)\})$, where $A(x)$ and $B(x)$ are the counting functions of $A$ and $B$, respectively. We prove that, for infinite additive complements $A$ and $B$, if $\limsup A(x)B(x)/x\le 1$, then, for any given $M>1$, we have $$A(x)B(x)-x\ge (\min \{ A(x), B(x)\})^M$$ for all sufficiently large integers $x$. This disproves the above Sárközy–Szemerédi conjecture. We also pose several problems for further research.
DOI : 10.4064/aa169-1-3
Mots-clés : infinite sequences non negative integers called infinite additive complements their sum contains sufficiently large integers szemer conjectured there exist infinite additive complements limsup x x x min where counting functions respectively prove infinite additive complements limsup x given have x x min sufficiently large integers disproves above szemer conjecture pose several problems further research

Yong-Gao Chen 1 ; Jin-Hui Fang 2

1 School of Mathematical Sciences and Institute of Mathematics Nanjing Normal University Nanjing 210023, P.R. China
2 Department of Mathematics Nanjing University of Information Science & Technology Nanjing 210044, P.R. China
@article{10_4064_aa169_1_3,
     author = {Yong-Gao Chen and Jin-Hui Fang},
     title = {On a conjecture of {S\'ark\"ozy} and {Szemer\'edi}},
     journal = {Acta Arithmetica},
     pages = {47--58},
     publisher = {mathdoc},
     volume = {169},
     number = {1},
     year = {2015},
     doi = {10.4064/aa169-1-3},
     language = {fr},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa169-1-3/}
}
TY  - JOUR
AU  - Yong-Gao Chen
AU  - Jin-Hui Fang
TI  - On a conjecture of Sárközy and Szemerédi
JO  - Acta Arithmetica
PY  - 2015
SP  - 47
EP  - 58
VL  - 169
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa169-1-3/
DO  - 10.4064/aa169-1-3
LA  - fr
ID  - 10_4064_aa169_1_3
ER  - 
%0 Journal Article
%A Yong-Gao Chen
%A Jin-Hui Fang
%T On a conjecture of Sárközy and Szemerédi
%J Acta Arithmetica
%D 2015
%P 47-58
%V 169
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa169-1-3/
%R 10.4064/aa169-1-3
%G fr
%F 10_4064_aa169_1_3
Yong-Gao Chen; Jin-Hui Fang. On a conjecture of Sárközy and Szemerédi. Acta Arithmetica, Tome 169 (2015) no. 1, pp. 47-58. doi : 10.4064/aa169-1-3. http://geodesic.mathdoc.fr/articles/10.4064/aa169-1-3/

Cité par Sources :