Coefficient bounds for level 2 cusp forms
Acta Arithmetica, Tome 168 (2015) no. 4, pp. 341-367.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We give explicit upper bounds for the coefficients of arbitrary weight $k$, level 2 cusp forms, making Deligne's well-known $O(n^{(k-1)/{2}+\epsilon })$ bound precise. We also derive asymptotic formulas and explicit upper bounds for the coefficients of certain level 2 modular functions.
DOI : 10.4064/aa168-4-2
Keywords: explicit upper bounds coefficients arbitrary weight nbsp level cusp forms making delignes well known k epsilon bound precise derive asymptotic formulas explicit upper bounds coefficients certain level modular functions

Paul Jenkins 1 ; Kyle Pratt 2

1 Department of Mathematics Brigham Young University Provo, UT 84602, U.S.A.
2 Department of Mathematics The University of Illinois at Urbana-Champaign Urbana, IL 61801, U.S.A.
@article{10_4064_aa168_4_2,
     author = {Paul Jenkins and Kyle Pratt},
     title = {Coefficient bounds for level 2 cusp forms},
     journal = {Acta Arithmetica},
     pages = {341--367},
     publisher = {mathdoc},
     volume = {168},
     number = {4},
     year = {2015},
     doi = {10.4064/aa168-4-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa168-4-2/}
}
TY  - JOUR
AU  - Paul Jenkins
AU  - Kyle Pratt
TI  - Coefficient bounds for level 2 cusp forms
JO  - Acta Arithmetica
PY  - 2015
SP  - 341
EP  - 367
VL  - 168
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa168-4-2/
DO  - 10.4064/aa168-4-2
LA  - en
ID  - 10_4064_aa168_4_2
ER  - 
%0 Journal Article
%A Paul Jenkins
%A Kyle Pratt
%T Coefficient bounds for level 2 cusp forms
%J Acta Arithmetica
%D 2015
%P 341-367
%V 168
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa168-4-2/
%R 10.4064/aa168-4-2
%G en
%F 10_4064_aa168_4_2
Paul Jenkins; Kyle Pratt. Coefficient bounds for level 2 cusp forms. Acta Arithmetica, Tome 168 (2015) no. 4, pp. 341-367. doi : 10.4064/aa168-4-2. http://geodesic.mathdoc.fr/articles/10.4064/aa168-4-2/

Cité par Sources :