Coefficient bounds for level 2 cusp forms
Acta Arithmetica, Tome 168 (2015) no. 4, pp. 341-367
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We give explicit upper bounds for the coefficients of arbitrary weight $k$, level 2 cusp forms, making Deligne's well-known $O(n^{(k-1)/{2}+\epsilon })$ bound precise. We also derive asymptotic formulas and explicit upper bounds for the coefficients of certain level 2 modular functions.
Keywords:
explicit upper bounds coefficients arbitrary weight nbsp level cusp forms making delignes well known k epsilon bound precise derive asymptotic formulas explicit upper bounds coefficients certain level modular functions
Affiliations des auteurs :
Paul Jenkins 1 ; Kyle Pratt 2
@article{10_4064_aa168_4_2,
author = {Paul Jenkins and Kyle Pratt},
title = {Coefficient bounds for level 2 cusp forms},
journal = {Acta Arithmetica},
pages = {341--367},
publisher = {mathdoc},
volume = {168},
number = {4},
year = {2015},
doi = {10.4064/aa168-4-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa168-4-2/}
}
Paul Jenkins; Kyle Pratt. Coefficient bounds for level 2 cusp forms. Acta Arithmetica, Tome 168 (2015) no. 4, pp. 341-367. doi: 10.4064/aa168-4-2
Cité par Sources :