On certain infinite families of imaginary quadratic fields whose Iwasawa $\lambda $-invariant is equal to 1
Acta Arithmetica, Tome 168 (2015) no. 4, pp. 301-339
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let $p$ be an odd prime number. We prove the existence of certain infinite families of imaginary quadratic fields in which $p$ splits and for which the Iwasawa $\lambda $-invariant of the cyclotomic $\mathbb {Z}_p$-extension is equal to $1$.
Keywords:
odd prime number prove existence certain infinite families imaginary quadratic fields which splits which iwasawa lambda invariant cyclotomic mathbb p extension equal
Affiliations des auteurs :
Akiko Ito  1
@article{10_4064_aa168_4_1,
author = {Akiko Ito},
title = {On certain infinite families of imaginary quadratic fields whose {Iwasawa} $\lambda $-invariant is equal to 1},
journal = {Acta Arithmetica},
pages = {301--339},
year = {2015},
volume = {168},
number = {4},
doi = {10.4064/aa168-4-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa168-4-1/}
}
TY - JOUR AU - Akiko Ito TI - On certain infinite families of imaginary quadratic fields whose Iwasawa $\lambda $-invariant is equal to 1 JO - Acta Arithmetica PY - 2015 SP - 301 EP - 339 VL - 168 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.4064/aa168-4-1/ DO - 10.4064/aa168-4-1 LA - en ID - 10_4064_aa168_4_1 ER -
Akiko Ito. On certain infinite families of imaginary quadratic fields whose Iwasawa $\lambda $-invariant is equal to 1. Acta Arithmetica, Tome 168 (2015) no. 4, pp. 301-339. doi: 10.4064/aa168-4-1
Cité par Sources :