On certain infinite families of imaginary quadratic fields whose Iwasawa $\lambda $-invariant is equal to 1
Acta Arithmetica, Tome 168 (2015) no. 4, pp. 301-339.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $p$ be an odd prime number. We prove the existence of certain infinite families of imaginary quadratic fields in which $p$ splits and for which the Iwasawa $\lambda $-invariant of the cyclotomic $\mathbb {Z}_p$-extension is equal to $1$.
DOI : 10.4064/aa168-4-1
Keywords: odd prime number prove existence certain infinite families imaginary quadratic fields which splits which iwasawa lambda invariant cyclotomic mathbb p extension equal

Akiko Ito 1

1 Kanagawa University 3-27-1, Rokkakubashi, Kanagawa-ku Yokohama-shi, Kanagawa, 221-8686, Japan
@article{10_4064_aa168_4_1,
     author = {Akiko Ito},
     title = {On certain infinite families of imaginary quadratic fields whose {Iwasawa} $\lambda $-invariant is equal to 1},
     journal = {Acta Arithmetica},
     pages = {301--339},
     publisher = {mathdoc},
     volume = {168},
     number = {4},
     year = {2015},
     doi = {10.4064/aa168-4-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa168-4-1/}
}
TY  - JOUR
AU  - Akiko Ito
TI  - On certain infinite families of imaginary quadratic fields whose Iwasawa $\lambda $-invariant is equal to 1
JO  - Acta Arithmetica
PY  - 2015
SP  - 301
EP  - 339
VL  - 168
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa168-4-1/
DO  - 10.4064/aa168-4-1
LA  - en
ID  - 10_4064_aa168_4_1
ER  - 
%0 Journal Article
%A Akiko Ito
%T On certain infinite families of imaginary quadratic fields whose Iwasawa $\lambda $-invariant is equal to 1
%J Acta Arithmetica
%D 2015
%P 301-339
%V 168
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa168-4-1/
%R 10.4064/aa168-4-1
%G en
%F 10_4064_aa168_4_1
Akiko Ito. On certain infinite families of imaginary quadratic fields whose Iwasawa $\lambda $-invariant is equal to 1. Acta Arithmetica, Tome 168 (2015) no. 4, pp. 301-339. doi : 10.4064/aa168-4-1. http://geodesic.mathdoc.fr/articles/10.4064/aa168-4-1/

Cité par Sources :