On additive bases II
Acta Arithmetica, Tome 168 (2015) no. 3, pp. 247-267
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let $G$ be an additive finite abelian group, and let $S$ be a sequence over $G$. We say that $S$ is regular if for every proper subgroup $H \subseteq G$, $S$ contains at most $|H|-1$ terms from $H$. Let $\mathsf c_0(G)$ be the smallest integer $t$ such that every regular sequence $S$ over $G$ of length $|S|\geq t$ forms an additive basis of $G$, i.e., every element of $G$ can be expressed as the sum over a nonempty subsequence of $S$. The constant $\mathsf c_0(G)$ has been determined previously only for the elementary abelian groups. In this paper, we determine $\mathsf c_0(G)$ for some groups including the cyclic groups, the groups of even order, the groups of rank at least five, and all the $p$-groups except $G=C_p\oplus C_{p^n}$ with $n\geq 2.$
Keywords:
additive finite abelian group sequence say regular every proper subgroup subseteq contains terms mathsf smallest integer every regular sequence length geq forms additive basis every element expressed sum nonempty subsequence constant mathsf has determined previously only elementary abelian groups paper determine mathsf groups including cyclic groups groups even order groups rank least five p groups except oplus geq
Affiliations des auteurs :
Weidong Gao 1 ; Dongchun Han 1 ; Guoyou Qian 2 ; Yongke Qu 3 ; Hanbin Zhang 1
@article{10_4064_aa168_3_3,
author = {Weidong Gao and Dongchun Han and Guoyou Qian and Yongke Qu and Hanbin Zhang},
title = {On additive bases {II}},
journal = {Acta Arithmetica},
pages = {247--267},
year = {2015},
volume = {168},
number = {3},
doi = {10.4064/aa168-3-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa168-3-3/}
}
TY - JOUR AU - Weidong Gao AU - Dongchun Han AU - Guoyou Qian AU - Yongke Qu AU - Hanbin Zhang TI - On additive bases II JO - Acta Arithmetica PY - 2015 SP - 247 EP - 267 VL - 168 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4064/aa168-3-3/ DO - 10.4064/aa168-3-3 LA - en ID - 10_4064_aa168_3_3 ER -
Weidong Gao; Dongchun Han; Guoyou Qian; Yongke Qu; Hanbin Zhang. On additive bases II. Acta Arithmetica, Tome 168 (2015) no. 3, pp. 247-267. doi: 10.4064/aa168-3-3
Cité par Sources :