On additive bases II
Acta Arithmetica, Tome 168 (2015) no. 3, pp. 247-267.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $G$ be an additive finite abelian group, and let $S$ be a sequence over $G$. We say that $S$ is regular if for every proper subgroup $H \subseteq G$, $S$ contains at most $|H|-1$ terms from $H$. Let $\mathsf c_0(G)$ be the smallest integer $t$ such that every regular sequence $S$ over $G$ of length $|S|\geq t$ forms an additive basis of $G$, i.e., every element of $G$ can be expressed as the sum over a nonempty subsequence of $S$. The constant $\mathsf c_0(G)$ has been determined previously only for the elementary abelian groups. In this paper, we determine $\mathsf c_0(G)$ for some groups including the cyclic groups, the groups of even order, the groups of rank at least five, and all the $p$-groups except $G=C_p\oplus C_{p^n}$ with $n\geq 2.$
DOI : 10.4064/aa168-3-3
Keywords: additive finite abelian group sequence say regular every proper subgroup subseteq contains terms mathsf smallest integer every regular sequence length geq forms additive basis every element expressed sum nonempty subsequence constant mathsf has determined previously only elementary abelian groups paper determine mathsf groups including cyclic groups groups even order groups rank least five p groups except oplus geq

Weidong Gao 1 ; Dongchun Han 1 ; Guoyou Qian 2 ; Yongke Qu 3 ; Hanbin Zhang 1

1 Center for Combinatorics Nankai University Tianjin 300071, P.R. China
2 Mathematical College Sichuan University Chengdu 610064, P.R. China
3 Department of Mathematics Luoyang Normal University Luoyang 471022, P.R. China
@article{10_4064_aa168_3_3,
     author = {Weidong Gao and Dongchun Han and Guoyou Qian and Yongke Qu and Hanbin Zhang},
     title = {On additive bases {II}},
     journal = {Acta Arithmetica},
     pages = {247--267},
     publisher = {mathdoc},
     volume = {168},
     number = {3},
     year = {2015},
     doi = {10.4064/aa168-3-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa168-3-3/}
}
TY  - JOUR
AU  - Weidong Gao
AU  - Dongchun Han
AU  - Guoyou Qian
AU  - Yongke Qu
AU  - Hanbin Zhang
TI  - On additive bases II
JO  - Acta Arithmetica
PY  - 2015
SP  - 247
EP  - 267
VL  - 168
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa168-3-3/
DO  - 10.4064/aa168-3-3
LA  - en
ID  - 10_4064_aa168_3_3
ER  - 
%0 Journal Article
%A Weidong Gao
%A Dongchun Han
%A Guoyou Qian
%A Yongke Qu
%A Hanbin Zhang
%T On additive bases II
%J Acta Arithmetica
%D 2015
%P 247-267
%V 168
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa168-3-3/
%R 10.4064/aa168-3-3
%G en
%F 10_4064_aa168_3_3
Weidong Gao; Dongchun Han; Guoyou Qian; Yongke Qu; Hanbin Zhang. On additive bases II. Acta Arithmetica, Tome 168 (2015) no. 3, pp. 247-267. doi : 10.4064/aa168-3-3. http://geodesic.mathdoc.fr/articles/10.4064/aa168-3-3/

Cité par Sources :