Convergence of series of dilated functions and spectral norms of GCD matrices
Acta Arithmetica, Tome 168 (2015) no. 3, pp. 221-246.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We establish a connection between the $L^2$ norm of sums of dilated functions whose $j$th Fourier coefficients are $\mathcal {O}(j^{-\alpha })$ for some $\alpha \in (1/2,1)$, and the spectral norms of certain greatest common divisor (GCD) matrices. Utilizing recent bounds for these spectral norms, we obtain sharp conditions for the convergence in $L^2$ and for the almost everywhere convergence of series of dilated functions.
DOI : 10.4064/aa168-3-2
Keywords: establish connection between norm sums dilated functions whose jth fourier coefficients mathcal alpha alpha spectral norms certain greatest common divisor gcd matrices utilizing recent bounds these spectral norms obtain sharp conditions convergence almost everywhere convergence series dilated functions

Christoph Aistleitner 1 ; István Berkes 2 ; Kristian Seip 3 ; Michel Weber 4

1 Institute of Mathematics A Graz University of Technology Steyrergasse 30 8010 Graz, Austria
2 Institute of Statistics TU Graz Kopernikusgasse 24/III 8010 Graz, Austria
3 Department of Mathematical Sciences Norwegian University of Science and Technology (NTNU) NO-7491 Trondheim, Norway
4 IRMA 10 rue du Général Zimmer 67084 Strasbourg Cedex, France
@article{10_4064_aa168_3_2,
     author = {Christoph Aistleitner and Istv\'an Berkes and Kristian Seip and Michel Weber},
     title = {Convergence of series of dilated functions and spectral norms of {GCD} matrices},
     journal = {Acta Arithmetica},
     pages = {221--246},
     publisher = {mathdoc},
     volume = {168},
     number = {3},
     year = {2015},
     doi = {10.4064/aa168-3-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa168-3-2/}
}
TY  - JOUR
AU  - Christoph Aistleitner
AU  - István Berkes
AU  - Kristian Seip
AU  - Michel Weber
TI  - Convergence of series of dilated functions and spectral norms of GCD matrices
JO  - Acta Arithmetica
PY  - 2015
SP  - 221
EP  - 246
VL  - 168
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa168-3-2/
DO  - 10.4064/aa168-3-2
LA  - en
ID  - 10_4064_aa168_3_2
ER  - 
%0 Journal Article
%A Christoph Aistleitner
%A István Berkes
%A Kristian Seip
%A Michel Weber
%T Convergence of series of dilated functions and spectral norms of GCD matrices
%J Acta Arithmetica
%D 2015
%P 221-246
%V 168
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa168-3-2/
%R 10.4064/aa168-3-2
%G en
%F 10_4064_aa168_3_2
Christoph Aistleitner; István Berkes; Kristian Seip; Michel Weber. Convergence of series of dilated functions and spectral norms of GCD matrices. Acta Arithmetica, Tome 168 (2015) no. 3, pp. 221-246. doi : 10.4064/aa168-3-2. http://geodesic.mathdoc.fr/articles/10.4064/aa168-3-2/

Cité par Sources :