The range of the sum-of-proper-divisors function
Acta Arithmetica, Tome 168 (2015) no. 2, pp. 187-199.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Answering a question of Erdős, we show that a positive proportion of even numbers are in the form $s(n)$, where $s(n)=\sigma (n)-n$, the sum of proper divisors of $n$.
DOI : 10.4064/aa168-2-6
Keywords: answering question erd positive proportion even numbers form where sigma n sum proper divisors nbsp

Florian Luca 1 ; Carl Pomerance 2

1 School of Mathematics University of the Witwatersrand P.O. Box Wits 2050 Johannesburg, South Africa
2 Department of Mathematics Dartmouth College Hanover, NH 03755-3551, U.S.A.
@article{10_4064_aa168_2_6,
     author = {Florian Luca and Carl Pomerance},
     title = {The range of the sum-of-proper-divisors function},
     journal = {Acta Arithmetica},
     pages = {187--199},
     publisher = {mathdoc},
     volume = {168},
     number = {2},
     year = {2015},
     doi = {10.4064/aa168-2-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa168-2-6/}
}
TY  - JOUR
AU  - Florian Luca
AU  - Carl Pomerance
TI  - The range of the sum-of-proper-divisors function
JO  - Acta Arithmetica
PY  - 2015
SP  - 187
EP  - 199
VL  - 168
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa168-2-6/
DO  - 10.4064/aa168-2-6
LA  - en
ID  - 10_4064_aa168_2_6
ER  - 
%0 Journal Article
%A Florian Luca
%A Carl Pomerance
%T The range of the sum-of-proper-divisors function
%J Acta Arithmetica
%D 2015
%P 187-199
%V 168
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa168-2-6/
%R 10.4064/aa168-2-6
%G en
%F 10_4064_aa168_2_6
Florian Luca; Carl Pomerance. The range of the sum-of-proper-divisors function. Acta Arithmetica, Tome 168 (2015) no. 2, pp. 187-199. doi : 10.4064/aa168-2-6. http://geodesic.mathdoc.fr/articles/10.4064/aa168-2-6/

Cité par Sources :