Explicit algebraic dependence formulae for infinite products related with Fibonacci and Lucas numbers
Acta Arithmetica, Tome 168 (2015) no. 2, pp. 161-186.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $d\geq 2$ be an integer. In 2010, the second, third, and fourth authors gave necessary and sufficient conditions for the infinite products $$ \prod_{\textstyle {k=1\atop U_{d^k}\neq-a_i}}^{\infty}\biggl( 1+\frac{a_i}{U_{d^k}}\bigg)\quad (i=1,\dots,m)\quad {\rm or} \!\quad\prod_{\textstyle{k=1\atop V_{d^k}\neq-a_i}}^{\infty}\biggl( 1+\frac{a_i}{V_{d^k}}\bigg)\quad (i=1,\dots,m) $$ to be algebraically dependent, where $a_i$ are non-zero integers and $U_n$ and $V_n$ are generalized Fibonacci numbers and Lucas numbers, respectively. The purpose of this paper is to relax the condition on the non-zero integers $a_1,\dots,a_m$ to non-zero real algebraic numbers, which gives new cases where the infinite products above are algebraically dependent.
DOI : 10.4064/aa168-2-5
Keywords: geq integer second third fourth authors gave necessary sufficient conditions infinite products prod textstyle atop neq a infty biggl frac bigg quad dots quad quad prod textstyle atop neq a infty biggl frac bigg quad dots algebraically dependent where non zero integers and generalized fibonacci numbers lucas numbers respectively purpose paper relax condition non zero integers dots non zero real algebraic numbers which gives cases where infinite products above algebraically dependent

Hajime Kaneko 1 ; Takeshi Kurosawa 2 ; Yohei Tachiya 3 ; Taka-aki Tanaka 4

1 Institute of Mathematics University of Tsukuba 1-1-1, Tennodai Tsukuba, Ibaraki 350-0006, Japan
2 Department of Mathematical Information Science Tokyo University of Science 1-3, Kagurazaka, Shinjuku-ku Tokyo 162–8601, Japan
3 Graduate School of Science and Technology Hirosaki University Hirosaki 036-8561, Japan
4 Department of Mathematics Keio University 3-14-1, Hiyoshi, Kohoku-ku Yokohama 223-8522, Japan
@article{10_4064_aa168_2_5,
     author = {Hajime Kaneko and Takeshi Kurosawa and Yohei Tachiya and Taka-aki Tanaka},
     title = {Explicit algebraic dependence formulae for infinite products related with {Fibonacci} and {Lucas} numbers},
     journal = {Acta Arithmetica},
     pages = {161--186},
     publisher = {mathdoc},
     volume = {168},
     number = {2},
     year = {2015},
     doi = {10.4064/aa168-2-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa168-2-5/}
}
TY  - JOUR
AU  - Hajime Kaneko
AU  - Takeshi Kurosawa
AU  - Yohei Tachiya
AU  - Taka-aki Tanaka
TI  - Explicit algebraic dependence formulae for infinite products related with Fibonacci and Lucas numbers
JO  - Acta Arithmetica
PY  - 2015
SP  - 161
EP  - 186
VL  - 168
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa168-2-5/
DO  - 10.4064/aa168-2-5
LA  - en
ID  - 10_4064_aa168_2_5
ER  - 
%0 Journal Article
%A Hajime Kaneko
%A Takeshi Kurosawa
%A Yohei Tachiya
%A Taka-aki Tanaka
%T Explicit algebraic dependence formulae for infinite products related with Fibonacci and Lucas numbers
%J Acta Arithmetica
%D 2015
%P 161-186
%V 168
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa168-2-5/
%R 10.4064/aa168-2-5
%G en
%F 10_4064_aa168_2_5
Hajime Kaneko; Takeshi Kurosawa; Yohei Tachiya; Taka-aki Tanaka. Explicit algebraic dependence formulae for infinite products related with Fibonacci and Lucas numbers. Acta Arithmetica, Tome 168 (2015) no. 2, pp. 161-186. doi : 10.4064/aa168-2-5. http://geodesic.mathdoc.fr/articles/10.4064/aa168-2-5/

Cité par Sources :