On the multiples of a badly approximable vector
Acta Arithmetica, Tome 168 (2015) no. 1, pp. 71-81
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $d$ be a positive integer and $\alpha$ a real algebraic number of degree $d+1$.
Set $\underline\alpha := (\alpha, \alpha^2, \ldots , \alpha^d)$. It is well-known that
$$
c(\underline\alpha) := \mathop{\rm li}minf_{q \to \infty} \, q^{1/d} \cdot \| q \underline\alpha \|>0,
$$
where $\| \cdot \|$ denotes the distance to the nearest integer.
Furthermore,
$$
{c(\underline\alpha) n^{-1/d}} \le c(n \underline\alpha) \le n c(\underline\alpha)
$$
for any integer $n \ge 1$. Our main result asserts that there exists a real number $C$,
depending only on $\alpha$, such that
$$
c(n \underline\alpha
) \le C n^{-1/d}
$$
for any integer $n \ge 1$.
Keywords:
positive integer alpha real algebraic number degree set underline alpha alpha alpha ldots alpha well known underline alpha mathop minf infty cdot underline alpha where cdot denotes distance nearest integer furthermore underline alpha underline alpha underline alpha integer main result asserts there exists real number nbsp nbsp depending only alpha underline alpha integer
Affiliations des auteurs :
Yann Bugeaud 1
@article{10_4064_aa168_1_4,
author = {Yann Bugeaud},
title = {On the multiples of a badly approximable vector},
journal = {Acta Arithmetica},
pages = {71--81},
publisher = {mathdoc},
volume = {168},
number = {1},
year = {2015},
doi = {10.4064/aa168-1-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa168-1-4/}
}
Yann Bugeaud. On the multiples of a badly approximable vector. Acta Arithmetica, Tome 168 (2015) no. 1, pp. 71-81. doi: 10.4064/aa168-1-4
Cité par Sources :