On the behavior close to the unit circle of the power series whose coefficients are squared Möbius function values
Acta Arithmetica, Tome 168 (2015) no. 1, pp. 17-30.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We consider the behavior of the power series $\mathfrak{M}_0(z)=\sum_{n=1}^{\infty}\mu^2(n)z^n$ as $z$ tends to $e(\beta)=e^{2\pi i\beta}$ along a radius of the unit circle. If $\beta$ is irrational with irrationality exponent 2 then $\mathfrak{M}_0(e(\beta)r)=O((1-r)^{-1/2-\varepsilon})$. Also we consider the cases of higher irrationality exponent. We prove that for each $\delta$ there exist irrational numbers $\beta$ such that $\mathfrak{M}_0(e(\beta)r)=\Omega((1-r)^{-1+\delta})$.
DOI : 10.4064/aa168-1-2
Keywords: consider behavior power series mathfrak sum infty tends beta beta along radius unit circle beta irrational irrationality exponent mathfrak beta r varepsilon consider cases higher irrationality exponent prove each delta there exist irrational numbers beta mathfrak beta omega r delta

Oleg Petrushov 1

1 Moscow State University Vorobyovy Gory Moscow, Russia
@article{10_4064_aa168_1_2,
     author = {Oleg Petrushov},
     title = {On the behavior close to the unit circle of the power series whose coefficients are squared {M\"obius} function values},
     journal = {Acta Arithmetica},
     pages = {17--30},
     publisher = {mathdoc},
     volume = {168},
     number = {1},
     year = {2015},
     doi = {10.4064/aa168-1-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa168-1-2/}
}
TY  - JOUR
AU  - Oleg Petrushov
TI  - On the behavior close to the unit circle of the power series whose coefficients are squared Möbius function values
JO  - Acta Arithmetica
PY  - 2015
SP  - 17
EP  - 30
VL  - 168
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa168-1-2/
DO  - 10.4064/aa168-1-2
LA  - en
ID  - 10_4064_aa168_1_2
ER  - 
%0 Journal Article
%A Oleg Petrushov
%T On the behavior close to the unit circle of the power series whose coefficients are squared Möbius function values
%J Acta Arithmetica
%D 2015
%P 17-30
%V 168
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa168-1-2/
%R 10.4064/aa168-1-2
%G en
%F 10_4064_aa168_1_2
Oleg Petrushov. On the behavior close to the unit circle of the power series whose coefficients are squared Möbius function values. Acta Arithmetica, Tome 168 (2015) no. 1, pp. 17-30. doi : 10.4064/aa168-1-2. http://geodesic.mathdoc.fr/articles/10.4064/aa168-1-2/

Cité par Sources :