Generators and integral points on twists of the Fermat cubic
Acta Arithmetica, Tome 168 (2015) no. 1, pp. 1-16
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We study integral points and generators on cubic twists of the Fermat cubic curve. The main results assert that integral points can be in a system of generators in the case where the Mordell–Weil rank is at most two. As a corollary, we explicitly describe the integral points on the curve.
Keywords:
study integral points generators cubic twists fermat cubic curve main results assert integral points system generators where mordell weil rank corollary explicitly describe integral points curve
Affiliations des auteurs :
Yasutsugu Fujita 1 ; Tadahisa Nara 2
@article{10_4064_aa168_1_1,
author = {Yasutsugu Fujita and Tadahisa Nara},
title = {Generators and integral points on twists of the {Fermat} cubic},
journal = {Acta Arithmetica},
pages = {1--16},
publisher = {mathdoc},
volume = {168},
number = {1},
year = {2015},
doi = {10.4064/aa168-1-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa168-1-1/}
}
TY - JOUR AU - Yasutsugu Fujita AU - Tadahisa Nara TI - Generators and integral points on twists of the Fermat cubic JO - Acta Arithmetica PY - 2015 SP - 1 EP - 16 VL - 168 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa168-1-1/ DO - 10.4064/aa168-1-1 LA - en ID - 10_4064_aa168_1_1 ER -
Yasutsugu Fujita; Tadahisa Nara. Generators and integral points on twists of the Fermat cubic. Acta Arithmetica, Tome 168 (2015) no. 1, pp. 1-16. doi: 10.4064/aa168-1-1
Cité par Sources :