Generators and integral points on twists of the Fermat cubic
Acta Arithmetica, Tome 168 (2015) no. 1, pp. 1-16.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We study integral points and generators on cubic twists of the Fermat cubic curve. The main results assert that integral points can be in a system of generators in the case where the Mordell–Weil rank is at most two. As a corollary, we explicitly describe the integral points on the curve.
DOI : 10.4064/aa168-1-1
Keywords: study integral points generators cubic twists fermat cubic curve main results assert integral points system generators where mordell weil rank corollary explicitly describe integral points curve

Yasutsugu Fujita 1 ; Tadahisa Nara 2

1 College of Industrial Technology Nihon University 2-11-1 Shin-ei Narashino, Chiba 275-8576, Japan
2 Faculty of Engineering Tohoku-Gakuin University 1-13-1 Chuo Tagajo, Miyagi 985-8537, Japan
@article{10_4064_aa168_1_1,
     author = {Yasutsugu Fujita and Tadahisa Nara},
     title = {Generators and integral points on twists of the {Fermat} cubic},
     journal = {Acta Arithmetica},
     pages = {1--16},
     publisher = {mathdoc},
     volume = {168},
     number = {1},
     year = {2015},
     doi = {10.4064/aa168-1-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa168-1-1/}
}
TY  - JOUR
AU  - Yasutsugu Fujita
AU  - Tadahisa Nara
TI  - Generators and integral points on twists of the Fermat cubic
JO  - Acta Arithmetica
PY  - 2015
SP  - 1
EP  - 16
VL  - 168
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa168-1-1/
DO  - 10.4064/aa168-1-1
LA  - en
ID  - 10_4064_aa168_1_1
ER  - 
%0 Journal Article
%A Yasutsugu Fujita
%A Tadahisa Nara
%T Generators and integral points on twists of the Fermat cubic
%J Acta Arithmetica
%D 2015
%P 1-16
%V 168
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa168-1-1/
%R 10.4064/aa168-1-1
%G en
%F 10_4064_aa168_1_1
Yasutsugu Fujita; Tadahisa Nara. Generators and integral points on twists of the Fermat cubic. Acta Arithmetica, Tome 168 (2015) no. 1, pp. 1-16. doi : 10.4064/aa168-1-1. http://geodesic.mathdoc.fr/articles/10.4064/aa168-1-1/

Cité par Sources :