The cardinality of sumsets: different summands
Acta Arithmetica, Tome 167 (2015) no. 4, pp. 375-395
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We offer a complete answer to the following question on the growth of sumsets in commutative groups. Let $h$ be a positive integer and $A, B_1, \dots , B_h$ be finite sets in a commutative group. We bound $|A+B_1+\dots +B_h|$ from above in terms of $|A|$, $|A+B_1|, \dots ,|A+B_h|$ and $h$. Extremal examples, which demonstrate that the bound is asymptotically sharp in all parameters, are furthermore provided.
Keywords:
offer complete answer following question growth sumsets commutative groups positive integer dots finite sets commutative group bound dots above terms dots extremal examples which demonstrate bound asymptotically sharp parameters furthermore provided
Affiliations des auteurs :
Brendan Murphy 1 ; Eyvindur Ari Palsson 2 ; Giorgis Petridis 1
@article{10_4064_aa167_4_4,
author = {Brendan Murphy and Eyvindur Ari Palsson and Giorgis Petridis},
title = {The cardinality of sumsets: different summands},
journal = {Acta Arithmetica},
pages = {375--395},
publisher = {mathdoc},
volume = {167},
number = {4},
year = {2015},
doi = {10.4064/aa167-4-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa167-4-4/}
}
TY - JOUR AU - Brendan Murphy AU - Eyvindur Ari Palsson AU - Giorgis Petridis TI - The cardinality of sumsets: different summands JO - Acta Arithmetica PY - 2015 SP - 375 EP - 395 VL - 167 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa167-4-4/ DO - 10.4064/aa167-4-4 LA - en ID - 10_4064_aa167_4_4 ER -
Brendan Murphy; Eyvindur Ari Palsson; Giorgis Petridis. The cardinality of sumsets: different summands. Acta Arithmetica, Tome 167 (2015) no. 4, pp. 375-395. doi: 10.4064/aa167-4-4
Cité par Sources :