Congruences of Ankeny–Artin–Chowla type and
the $p$-adic class number formula revisited
Acta Arithmetica, Tome 167 (2015) no. 3, pp. 281-298
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
The purpose of this paper is to interpret the results of Jakubec and his collaborators on congruences of Ankeny–Artin–Chowla type for cyclic totally real fields as an elementary algebraic version of the $p$-adic class number formula modulo powers of $p$. We show how to generalize the previous results to congruences modulo arbitrary powers $p^t$ and to equalities in the $p$-adic completion ${\mathbb {Q}_p}$ of the field of rational numbers $\mathbb {Q}$. Additional connections to the Gross–Koblitz formula and explicit congruences for quadratic and cubic fields are given.
Keywords:
purpose paper interpret results jakubec his collaborators congruences ankeny artin chowla type cyclic totally real fields elementary algebraic version p adic class number formula modulo powers generalize previous results congruences modulo arbitrary powers equalities p adic completion mathbb field rational numbers mathbb additional connections gross koblitz formula explicit congruences quadratic cubic fields given
Affiliations des auteurs :
František Marko 1
@article{10_4064_aa167_3_6,
author = {Franti\v{s}ek Marko},
title = {Congruences of {Ankeny{\textendash}Artin{\textendash}Chowla} type and
the $p$-adic class number formula revisited},
journal = {Acta Arithmetica},
pages = {281--298},
publisher = {mathdoc},
volume = {167},
number = {3},
year = {2015},
doi = {10.4064/aa167-3-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa167-3-6/}
}
TY - JOUR AU - František Marko TI - Congruences of Ankeny–Artin–Chowla type and the $p$-adic class number formula revisited JO - Acta Arithmetica PY - 2015 SP - 281 EP - 298 VL - 167 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa167-3-6/ DO - 10.4064/aa167-3-6 LA - en ID - 10_4064_aa167_3_6 ER -
František Marko. Congruences of Ankeny–Artin–Chowla type and the $p$-adic class number formula revisited. Acta Arithmetica, Tome 167 (2015) no. 3, pp. 281-298. doi: 10.4064/aa167-3-6
Cité par Sources :