Modular case of Levinson's theorem
Acta Arithmetica, Tome 167 (2015) no. 3, pp. 201-237
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We evaluate the integral mollified second moment of $L$-functions of primitive cusp forms and we obtain, for such $L$-functions, an explicit positive proportion of zeros which lie on the critical line.
Keywords:
evaluate integral mollified second moment l functions primitive cusp forms obtain l functions explicit positive proportion zeros which lie critical line
Affiliations des auteurs :
Damien Bernard 1
@article{10_4064_aa167_3_1,
author = {Damien Bernard},
title = {Modular case of {Levinson's} theorem},
journal = {Acta Arithmetica},
pages = {201--237},
publisher = {mathdoc},
volume = {167},
number = {3},
year = {2015},
doi = {10.4064/aa167-3-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa167-3-1/}
}
Damien Bernard. Modular case of Levinson's theorem. Acta Arithmetica, Tome 167 (2015) no. 3, pp. 201-237. doi: 10.4064/aa167-3-1
Cité par Sources :